190 resultados para Near Eastern Archaeology, Syria, ivory, royal iconography, Late Bronze Age
Resumo:
The Pliocene and Pleistocene deposits recovered at Site 976 from the northwestern Alboran Sea at the Málaga base-of-slope include five main sedimentary facies: hemipelagic, turbidite, homogeneous gravity-flow, contourite, and debris-flow facies. The thickness and vertical distribution of these facies into lithostratigraphic Units I, II, and III show that the turbidites and hemipelagic facies are the dominant associations. The Pliocene and Pleistocene depositional history has been divided into three sedimentary stages: Stage I of early Pliocene age, in which hemipelagic and low-energy turbidites were the dominant processes; Stage II of early Pleistocene/late Pliocene age, in which the dominant processes were the turbidity currents interrupted by short episodes of other gravity flows (debris-flows and homogeneous gravity-flow facies) and bottom currents; and Stage III of Pleistocene age, in which both hemipelagic and low-energy gravity-flow processes occurred. The sedimentation during these three stages was controlled mainly by sea-level changes and also by the sediment supply that caused rapid terrigenous sedimentation variations from a proximal source represented by the Fuengirola Canyon.
Resumo:
Extension of the 10Be geochronology for deep-sea sediments beyond the limit of late Pliocene age found in published works has been attempted. The results obtained on sediments from Deep Sea Drilling Project (DSDP) Sites 576 and 578 of Leg 86 suggest the feasibility of dating sediments as old as 12 to 15 m.y. At both sites, there have been large changes in sedimentation rate, with the Pleistocene sediments accumulating several times faster than those of the Pliocene, which in turn were deposited several times more rapidly than the late Miocene sediments. The Pleistocene-Pliocene section is considerably thicker in Hole 578 than in Hole 576B: the respective depths for the 7 m.y. time boundary in the two holes are about 125 and about 25 m. These 10Be-based age estimates are in agreement with the paleomagnetic stratigraphies established for the two sites. The suggested enhancement in the oceanic deposition of 10Be before 7 to 9 m.y. ago, as noticed in manganese crusts, has found tentative support from the present sedimentary records. A preliminary search for 10Be production variation during a geomagnetic field reversal has been conducted. In Hole 578, an enhanced 10Be concentration is found in a sample close to the Brunhes/Matuyama reversal boundary. More detailed and systematic measurements are required to confirm this observation, which bears on the detailed behavior of the geomagnetic field during the reversal.
Resumo:
Hydrate Ridge off the coast of Oregon, USA, is a prime example for gas hydrate occurrences in active margin settings. It is part of the Cascadia Margin and was the focus of Ocean Drilling Program (ODP) Leg 204, which successfully recovered fluids from nine sites from the southern part of the ridge. Iodide concentrations in pore fluids associated with gas hydrates are strongly enhanced, by factors up to 5000 compared to seawater, which allows the use of this biophilic element as tracer for organic source regions. We applied the cosmogenic isotope 129I (T1/2=15.7 Ma) system to determine the age of the organic source formation responsible for the iodide enrichment. In all sites at ODP Leg 204, 129I/I ratios were found to decrease with depth to values around 250x10**-15, corresponding to minimum ages of 40 Ma, but in several sites, maxima in the 129I/I ratios point to the local addition of young iodide. The results indicate that a large amount of iodide was derived from deep accreted sediments of Eocene age, and that additional source regions provide iodide of Late Miocene age. The presence of old iodide in the pore waters suggests that fluid pathways are open to allow transport over large distances into the gas hydrate fields. The strong correlation between iodide and methane in hydrate fields coupled with the similarity in transport parameters in aqueous solutions suggests that a large fraction of methane in gas hydrates also has old sources and is transported into the present locations from source regions of Eocene age.
Resumo:
Among the five sites drilled during Ocean Drilling Program Leg 130, two deep holes (8O3D and 807C) penetrated Cretaceous sediments overlying the basaltic pillows, flows, and possibly basement rocks. Abundant, poorly preserved radiolarians with limited diversity were recovered from a few horizons within the sediments proximal to the basalt. At Site 803, three thin layers of radiolarites interbedded with claystone and clayey siltstone yielded radiolarian assemblages of late Albian age. At Site 807, several layers of radiolarian siltstones were recovered proximal to the basalt. Among them the most significant radiolarian assemblage is an Aptian fauna, located approximately 7 m above the basaltic flows. The Aptian radiolarian age for Site 807 is at least in accord with those suggested by planktonic foraminifer and paleomagnetic evidence. These Cretaceous radiolarians are the oldest assemblages recorded from the Ontong Java Plateau region.
Resumo:
Analyses of Re, Os, and Ir concentrations, as well as Os-isotopic compositions, are reported for a suite of sediments from Ocean Drilling Program Site 959. These samples vary in age from late Neogene to Late Cretaceous, and represent a range in depositional oxidation-reduction conditions from suboxic in the Neogene to anoxic in the Late Cretaceous. Age assignments based on shipboard biostratigraphic data are used to calculate initial 187Os/186Os ratios of Neogene nannofossil/foraminifer oozes and Eocene to upper Oligocene laminated diatomites. These calculated initial ratios are in general agreement with published data constraining the Os-isotopic evolution of seawater through time, indicating that the Os-isotopic composition of these sediments is controlled largely by the Os isotopic composition of contemporaneous seawater. Results from analyses of Upper Cretaceous to lower Paleocene claystones do not exhibit elevated Ir concentrations and exhibit Re-Os systematics that are highly consistent with closed-system production of 187Os by in situ 187Re decay. Scatter in both the Cretaceous and Cenozoic data sets is likely the result of the influence of nonhydrogenous Os, carried by clastics, on the bulk sediment Os-isotopic composition, or post-depositional mobility of Re and/or Os.
Resumo:
Cyst assemblages from Sites 548, 549, and 550 were examined and gave evidence of early Eocene to late Miocene age. These assemblages were compared with other North Atlantic DSDP sites and with onshore sections in Denmark, southern England, Spain, and Italy. Some environmental interpretation is attempted for the Miocene assemblages; pollen, spores, and dinoflagellate cyst species were used to interpret the proximity of the shoreline. Key species are illustrated, along with some forms that are not discussed.
Resumo:
Planktonic foraminiferal faunas of the southeast Pacific indicate that sea surface temperatures (SST) have varied by as much as 8-10°C in the Peru Current, and by ?5-7°C along the equator, over the past 150,000 years. Changes in SST at times such as the Last Glacial Maximum reflect incursion of high-latitude species Globorotalia inflata and Neogloboquadrina pachyderma into the eastern boundary current and as far north as the equator. A simple heat budget model of the equatorial Pacific shows that observed changes in Peru Current advection can account for about half of the total variability in equatorial SSTs. The remaining changes in equatorial SST, which are likely related to local changes in upwelling or pycnocline depth, precede changes in polar climates as recorded by d18O. This partitioning of processes in eastern equatorial Pacific SST reveals that net ice-age cooling here reflects first a rapid response of equatorial upwelling to insolation, followed by a later response to changes in the eastern boundary current associated with high-latitude climate (which closely resembles variations in atmospheric CO2 as recorded in the Vostok ice core). Although precise mechanisms responsible for the equatorial upwelling component of climate change remain uncertain, one likely candidate that may operate independently of the ice sheets is insolation-driven changes in El Niño/Southern Oscillation (ENSO) frequency. Early responses of equatorial SST detected both here and elsewhere highlight the sensitivity of tropical systems to small changes in seasonal insolation. The scale of tropical changes we have observed are substantially greater than model predictions, suggesting a need for further quantitative assessment of processes associated with long-term climate change.
Resumo:
Dinoflagellate stratigraphy is described for the section from 364.75 to 843.85 meters below seafloor (mbsf) at Site 1148 (Sections 184-1148A-40X-1 through 76X-6 and 184-1148B-39X-CC through 56X-1) in the South China Sea. Two assemblage zones and two subzones are defined, based on characteristics of the assemblages and lowest/highest occurrences of some key species. These are the Cleistosphaeridium diversispinosum Assemblage Zone (Zone A; Oligocene), with the Enneadocysta pectiniformis Subzone (Subzone A-1) and the Cordosphaeridium gracile Subzone (Subzone A-2), and the Polysphaeridium zoharyi Assemblage Zone (Zone B; early Miocene). The highest concurrent occurrence of Enneadocysta arcuata, Eneadocysta multicornuta, Homotryblium plectilum, and Homotryblium tenuispinosum delineates the upper boundary of Zone A, which appears to mark a hiatus. Subzone A-1 is of early Oligocene age, as evidenced by the highest occurrences of E. pectiniformis and Phthanoperidinium amoenum at the upper boundary of the subzone. Subzone A-2 is of late Oligocene age based on the highest occurrences of C. gracile and Wetzeliella gochtii close to the upper boundary of the subzone and the occurrence of Distatodinium ellipticum and Membranophoridium aspinatum within the subzone. Zone B is dated as early Miocene based on the lowest occurrences of Cerebrocysta satchelliae, Hystrichosphaeropsis obscura, Melitasphaeridium choanophorum, Membranilarnacia? picena, and Tuberculodinium vancampoae within the zone. The present assemblage zones/subzones are correlative to various degrees with coeval zones/assemblages from areas of high to low latitudes in terms of common key species. We have compared the species content of the assemblage Zones A and B, and the subzones A-1 and A-2, with coeval assemblage(s)/zone(s) described from many, often widely distant, high- and low-latitude regions of the world. These comparisons show that, to various degrees and aside from a number of key species, the coordinated presence of certain important species may also help to assign an age to a given assemblage.