551 resultados para HYDROTHERMAL FLUIDS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

ODP Hole 801C penetrates >400 m into 170-Ma oceanic basement formed at a fast-spreading ridge. Most basalts are slightly (10-20%) recrystallized to saponite, calcite, minor celadonite and iron oxyhydroxides, and trace pyrite. Temperatures estimated from oxygen isotope data for secondary minerals are 5-100°C, increasing downward. At the earliest stage, dark celadonitic alteration halos formed along fractures and celadonite, and quartz and chalcedony formed in veins from low-temperature (<100°C) hydrothermal fluids. Iron oxyhydroxides subsequently formed in alteration halos along fractures where seawater circulated, and saponite and pyrite developed in the host rock and in zones of restricted seawater flow under more reducing conditions. Chemical changes include variably elevated K, Rb, Cs, and H2O; local increases in FeT, Ba, Th, and U; and local losses of Mg and Ni. Secondary carbonate veins have 87Sr/86Sr = 0.706337 - 0.707046, and a negative correlation with d18O results from seawater-basalt interaction. Carbonates could have formed at any time since the formation of Site 801 crust. Variable d13C values (-11.2? to 2.9?) reflect the incorporation of oxidized organic carbon from intercalated sediments and changes in the d13C of seawater over time. Compared to other oceanic basements, a major difference at Site 801 is the presence of two hydrothermal silica-iron deposits that formed from low-temperature hydrothermal fluids at the spreading axis. Basalts associated with these horizons are intensely altered (60-100%) to phyllosilicates, calcite, K-feldspar, and titanite; and exhibit large increases in K, Rb, Cs, Ba, H2O, and CO2, and losses of FeT, Mn, Mg, Ca, Na, and Sr. These effects may be common in crust formed at fast-spreading rates, but are not ubiquitous. A second important difference is that the abundance of brown oxidation halos along fractures at Site 801 is an order of magnitude less than at some other sites (2% vs. 20-30%). Relatively smooth basement topography (<100 m) and high sedimentation rate (8 m/Ma) probably restricted the access of oxygenated seawater. Basement lithostratigraphy and early low-temperature hydrothermal alteration and mineral precipitation in fractures at the spreading axis controlled permeability and limited later flow of oxygenated seawater to restricted depth intervals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stockwork-like metal sulfide mineralizations were found at 910-928 m below seafloor (BSF) in the pillow/dike transition zone of Hole 504B. This is the same interval where most physical properties of the 5.9-m.y.-old crust of the Costa Rica Rift change from those characteristic of Layer 2B to those of Layer 2C. The pillow lavas, breccias, and veins of the stockwork-like zone were studied by transmitted and reflected light microscopy, X-ray diffraction, and electron microprobe analysis. Bulk rock oxygen isotopic analyses as well as isolated mineral oxygen and sulfur isotopic analyses and fluid inclusion measurements were carried out. A complex alteration history was reconstructed that includes three generations of fissures, each followed by precipitation of characteristic hydrothermal mineral parageneses: (1) Minor and local deposition of quartz occurred on fissure walls; adjacent wall rocks were silicified, followed by formation of chlorite and minor pyrite I in the veins, whereas albite, sphene, chlorite and chlorite-expandable clay mixtures, actinolite, and pyrite replaced igneous phases in the host rocks. The hydrothermal fluids responsible for this first stage were probably partially reacted seawater, and their temperatures were at least 200-250° C. (2) Fissures filled during the first stage were reopened and new cracks formed. They were filled with quartz, minor chlorite and chlorite-expandable clay mixtures, traces of epidote, common pyrite, sphalerite, chalcopyrite, and minor galena. During the second stage, hydrothermal fluids were relatively evolved metal- and Si-rich solutions whose temperatures ranged from 230 to 340° C. The fluctuating chemical composition and temperature of the solutions produced a complex depositional sequence of sulfides in the veins: chalcopyrite I, ± Fe-rich sphalerite, chalcopyrite II ("disease"), Fe-poor sphalerite, chalcopyrite III, galena, and pyrite II. (3) During the last stage, zeolites and Mg-poor calcite filled up the remaining spaces and newly formed cracks and replaced the host rock plagioclase. Analcite and stilbite were first to form in veins, possibly at temperatures below 200°C; analcite and earlier quartz were replaced by laumontite at 250°C, whereas calcite formation temperature ranged from 135 to 220°C. The last stage hydrothermal fluids were depleted in Mg and enriched in Ca and 18O compared to seawater and contained a mantle carbon component. This complex alteration history paralleling a complex mineral paragenesis can be interpreted as the result of a relatively long-term evolution of a hydrothermal system with superimposed shorter term fluctuations in solution temperature and composition. Hydrothermal activity probably began close to the axis of the Costa Rica Rift with the overall cooling of the system and multiple fracturing stages due to movement of the crust away from the axis and/or cooling of a magmatic heat source.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The conventional model of leaching volcanic rocks as a source of metals in a seafloor hydrothermal systems has been tested by examining the behavior of Pb and other trace elements during hydrothermal alteration. ODP Leg 193 drill sites 1188 (Snowcap) and 1189 (Roman Ruins) on Pual Ridge in the eastern Manus Basin offshore eastern Papua New Guinea provide a unique three-dimensional window into an active back-arc hydrothermal system. We investigate by means of a LA-ICP-MS microbeam technique the capacity of Pb to be leached from a host volcanic rock exposed to various types and intensities of alteration. Our results are in general agreement with previous studies that utilized bulk analytical techniques but provide a more detailed explanation of the processes. Fresh representative dacitic lavas from the Pual Ridge have an average whole rock Pb content of 5.2 ppm, an average interstitial glass Pb content of 5.6 ppm and an average plagioclase Pb content of 1.0 ppm. Altered matrix samples have highly variable Pb values ranging from 0 to 52.4 ppm. High Pb values in altered samples are associated with a low temperature chlorite and clay mineral assemblage, in some cases overprinted by a high temperature (up to 350°C) silica-rich "bleaching" alteration. Only the most highly altered matrix samples have REE patterns that differ from the fresh Pual Ridge dacite. This may represent either different lava histories or alteration characteristics that have affected normally immobile REEs. Altered samples with the highest Pb values have similar REE patterns to those of the local unaltered lavas. They are compositionally similar to typical Pual Ridge dacites indicating a genetic relationship between the main regional volcanic suite and the subseafloor hydrothermally altered, Pb-enriched material. Relative loss/gain for Pb between the analyzed altered samples and a calculated precursor show a maximum relative gain of 901%. Samples with relative Pb gain from both drill sites are associated with lower temperature alteration mineral assemblages characterized by pervasive chloritization. The related lower temperature (220-250°C) neutral to slightly acidic fluids have been ascribed by others to return circulation of hydrothermal fluids that did not interact with seawater. Because altered samples have a higher Pb content than the fresh precursor, leaching of fresh volcanic rocks cannot be the source of Pb in the hydrothermal systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Strontium isotopes are useful tracers of fluid-rock interaction in marine hydrothermal systems and provide a potential way to quantify the amount of seawater that passes through these systems. We have determined the whole-rock Sr-isotopic compositions of a section of upper oceanic crust that formed at the fast-spreading East Pacific Rise, now exposed at Hess Deep. This dataset provides the first detailed comparison for the much-studied Ocean Drilling Program (ODP) drill core from Site 504B. Whole-rock and mineral Sr concentrations indicate that Sr-exchange between hydrothermal fluids and the oceanic crust is complex, being dependent on the mineralogical reactions occurring; in particular, epidote formation takes up Sr from the fluid increasing the 87Sr/86Sr of the bulk-rock. Calculating the fluid-flux required to shift the Sr-isotopic composition of the Hess Deep sheeted-dike complex, using the approach of Bickle and Teagle (1992, doi:10.1016/0012-821X(92)90221-G) gives a fluid-flux similar to that determined for ODP Hole 504B. This suggests that the level of isotopic exchange observed in these two regions is probably typical for modern oceanic crust. Unfortunately, uncertainties in the modeling approach do not allow us to determine a fluid-flux that is directly comparable to fluxes calculated by other methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As soon as they are emplaced on the sea floor, oceanic basalts go through a low-temperature alteration process which produces black halos concentrical with exposed surfaces and cracks, whereas the grey internal parts of the basaltic pieces apparently remain unaltered. This paper reports for the first time the occurrence of authigenic siderite and ankerite in oceanic basalts and more particularly in the grey internal parts of the latter. Small (8-50 µm) crystals of zoned siderite and ankerite have been observed in ten vesicles of two samples recovered from DSDP Holes 506G and 507B drilled south of the Galápagos Spreading Center (GSC). These Fe-carbonates show a large range of chemical composition (FeCO3 = 47-88%; CaCO3 = 5-40%; MgCO3 = 1-20%; MnCO3 = 0-11%). Most of them are Ca-richer than siderite reported in the literature. The chemical composition of the carbonate clearly reflects the fluctuation of the fluid chemical composition during crystallization. Mn and at least part of the Fe are thought to be hydrothermal in origin, whereas Mg and probably Ca were provided by seawater. It is proposed that siderite and ankerite formed at relatively low temperature (<85°C) and is metastable. The alteration of the GSC basalts seems to have proceeded in two stages: during the first, reducing stage, pyrite precipitated from hydrothermal fluids. A little further in the rock, siderite precipitated from the fluid which had already been modified by the formation of pyrite, and thus in a microenvironment where particular conditions prevailed (high P_CO2, increasing p_S**2- or increasing pH or increasing or decreasing pe). During the second, oxidizing, stage of alteration, a seawater-dominated fluid allowed crystallization of mixtures of Fe-rich smectites and micas, and Fe-hydroxides forming the black halos in the external portion of the basalt pieces and locally oxidizing pyrite and siderite in their innermost part. It is shown in this paper that, even at its earliest stage, and at low temperature, alteration of the upper oceanic crust (lavas) involves fluids enriched in Fe and Mn, interpreted to be of hydrothermal origin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Hole 504B near the Costa Rica Rift is the deepest hole drilled in the ocean crust, penetrating a volcanic section, a transition zone and a sheeted dike complex. The distribution of Li and its isotopes through this 1.8-km section of oceanic crust reflects the varying conditions of seawater alteration with depth. The upper volcanic rocks, altered at low temperatures, are enriched in Li (5.6-27.3 ppm) and have heavier isotopic compositions (delta7Li=6.6-20.8?) relative to fresh mid-ocean ridge basalt (MORB) due to uptake of seawater Li into alteration clays. The Li content and isotopic compositions of the deeper volcanic rocks are similar to MORB, reflecting restricted seawater circulation in this section. The transition zone is a region of mixing of seawater with upwelling hydrothermal fluids and sulfide mineralization. Li enrichment in this zone is accompanied by relatively light isotopic compositions (-0.8-2.1?) which signify influence of basalt-derived Li during mineralization and alteration. Li decreases with depth to 0.6 ppm in the sheeted dike complex as a result of increasing hydrothermal extraction in the high-temperature reaction zone. Rocks in the dike complex have variable isotopic values that range from -1.7 to 7.9?, depending on the extent of hydrothermal recrystallization and off-axis low-temperature alteration. Hydrothermally altered rocks are isotopically light because 6Li is preferentially retained in greenschist and amphibolite facies minerals. The delta7Li values of the highly altered rocks of the dike complex are complementary to those of high-temperature mid-ocean ridge vent fluids and compatible to equilibrium control by the alteration mineral assemblage. The inventory of Li in basement rocks permits a reevaluation of the role of oceanic crust in the budget of Li in the ocean. On balance, the upper 1.8 km of oceanic crusts remains a sink for oceanic Li. The observations at 504B and an estimated flux from the underlying 0.5 km of gabbro suggest that the global hydrothermal flux is at most 8*10**9 mol/yr, compatible with geophysical thermal models. This work defines the distribution of Li and its isotopes in the upper ocean crust and provides a basis to interpret the contribution of subducted lithosphere to arc magmas and cycling of crustal material in the deep mantle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alteration of sheeted dikes exposed along submarine escarpments at the Pito Deep Rift (NE edge of the Easter microplate) provides constraints on the crustal component of axial hydrothermal systems at fast spreading mid-ocean ridges. Samples from vertical transects through the upper crust constrain the temporal and spatial scales of hydrothermal fluid flow and fluid-rock reaction. The dikes are relatively fresh (average extent of alteration is 27%), with the extent of alteration ranging from 0 to >80%. Alteration is heterogeneous on scales of tens to hundreds of meters and displays few systematic spatial trends. Background alteration is amphibole-dominated, with chlorite-rich dikes sporadically distributed throughout the dike complex, indicating that peak temperatures ranged from <300°C to >450°C and did not vary systematically with depth. Dikes locally show substantial metal mobility, with Zn and Cu depletion and Mn enrichment. Amphibole and chlorite fill fractures throughout the dike complex, whereas quartz-filled fractures and faults are only locally present. Regional variability in alteration characteristics is found on a scale of <1-2 km, illustrating the diversity of fluid-rock interaction that can be expected in fast spreading crust. We propose that much of the alteration in sheeted dike complexes develops within broad, hot upwelling zones, as the inferred conditions of alteration cannot be achieved in downwelling zones, particularly in the shallow dikes. Migration of circulating cells along rides axes and local evolution of fluid compositions produce sections of the upper crust with a distinctive character of alteration, on a scale of <1-2 km and <5-20 ka.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In three veins from the lower part of Deep Sea Drilling Project Hole 504B, 298 meters below the top of basement, primary augite is replaced by aegirine-augite. This transformation occurs only in subophitic basalts, at the contact with veins which always include a dark-olive, Mg-rich clay mineral. Talc occurs in one of these veins; it can be regarded either as a vein constituent or as a product of augite alteration. Melanite (Ca,Fe,Ti-rich garnet) appears in only one of these three veins, where a Ca-carbonate is associated with a Mg-rich clay mineral. The occurrence of melanite in Hole 504B could be due to the conjunction of particular conditions: (1) basalt with a subophitic texture, (2) presence of hydrothermal fluids carrying Ca, Fe, Si, Ti, Al, Mg, and Na, (3) rather high temperatures. Possibly the melanite and aegirine-augite formed by deuteric alteration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gabbroic rocks and their late differentiates recovered at Site 735 represent 500 m of oceanic layer 3. The original cooling of a mid-ocean ridge magma chamber, its penetration by ductile shear zones and late intrusives, and the subsequent penetration of seawater through a network of cracks and into highly permeable magmatic hydrofracture horizons are recorded in the metamorphic stratigraphy of the core. Ductile shear zones are characterized by extensive dynamic recrystallization of primary phases, beginning in the granulite facies and continuing into the lower amphibolite facies. Increasing availability of seawater during dynamic recrystallization is reflected in depletions in 18O, increasing abundance of amphibole of variable composition and metamorphic plagioclase of intermediate composition, and more complete coronitic or pseudomorphous static replacement of magmatic minerals. Downcore correlation of synkinematic assemblages, bulk-rock oxygen isotopic compositions, and vein abundance suggest that seawater is introduced into the crust by way of small cracks and veins that mark the end of the ductile phase of deformation. This "deformation-enhanced" metamorphism dominates the upper 180 and the lower 100 m of the core. In the lower 300 m of the core, mineral assemblages of greenschist and zeolite facies are abundant within or adjacent to brecciated zones. Leucocratic veins found in these zones and adjacent host rock contain diopside, sodic plagioclase, epidote, chlorite, analcime, thomsonite, natrolite, albite, quartz, actinolite, sphene, brookite, and sulfides. The presence of zircon, Cl-apatite, sodic plagioclase, sulfides, and diopside in leucocratic veins having local magmatic textures suggests that some of the veins originated from late magmas or from hydrothermal fluids exsolved from such magmas that were subsequently replaced by (seawater-derived) hydrothermal assemblages. The frequent association of these late magmatic intrusive rocks within the brecciated zones suggests that they are both artifacts of magmatic hydrofracture. Such catastrophic fracture and hydrothermal circulation could produce episodic venting of hydrothermal fluids as well as the incorporation of a magmatically derived hydrothermal component. The enhanced permeability of the brecciated zones produced lower temperature assemblages because of larger volumes of seawater that penetrated the crust. The last fractures were sealed either by these hydrothermal minerals or by late carbonate-smectite veins, resulting in the observed low permeability of the core.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Okinawa Trough (OT) in the East Asian continental margin is characterized by thick terrigenous sediment and ubiquitous volcanic-hydrothermal activities. In this study, the clays collected during IODP Expedition 331 to the middle OT (Iheya North Knoll) were analyzed for mineralogical and geochemical compositions. By comparing with the clays from the East China Sea shelf and surrounding rivers, we examine different clay origins. The hydrothermal field in the mid-OT is dominated by Mg-rich chlorite, while the recharge zone has clay mineral assemblages similar to the shelf and rivers, showing high content of illite, subordinate chlorite and kaolinite and scarce smectite. Compared to the terrigenous clays, the hydrothermal clays in the OT have high concentrations of Mg, Mn and Zr but low Fe, Na, K, Ca, Ba, Sr, P, Sc and Ti, while the hydrothermal clays in the mid-ocean ridge are relatively enriched in Fe and V and depleted in Al, Mg, Zr, Sc and Ti. Different fractionation patterns of rare earth elements also register in the terrigenous and hydrothermal clays, diagnostic of variable clay origins. We infer that the OT hydrothermal clay was primarily formed by the chemical alteration of detrital sediments subject to the hydrothermal fluids. The remarkably different compositions of hydrothermal clays between the sediment-rich back arc basin like OT and the sediment-starved ocean ridge suggest different physical and chemical processes of hydrothermal fluids and fluid-rock/sediment reactions under various geologic settings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report results from boron, carbon and oxygen stable isotope analyses of faulted and veined rocks recovered by scientific ocean drilling during ODP Leg 180 in the western Woodlark Basin, off Papua New Guinea. In this area of active continental extension, crustal break-up and incipient seafloor spreading, a shallow-dipping, seismically active detachment fault accommodates strain, defining a zone of mylonites and cataclasites, vein formation and fluid infiltration. Syntectonic microstructures and vein-fill mineralogy suggest frictional heating during slip during extension and exhumation of Moresby Seamount. Low carbon and oxygen isotope ratios of calcite veins indicate precipitation from hydrothermal fluids (delta13C PDB down to -17?; delta18O PDB down to -22?) formed by both dehydration and decarbonation. Boron contents are low (<7 ppm), indicating high-grade metamorphic source rock for the fluids. Some of the delta11B signatures (17-35?; parent solutions to calcite vein fills) are low when compared to deep-seated waters in other tectonic environments, likely reflecting preferential loss of 11B during low-grade metamorphism at depth. Pervasive devolatilization and flux of CO2-rich fluids are evident from similar vein cement geochemistry in the detachment fault zone and splays further updip. Multiple rupture-and-healing history of the veins suggests that precipitation may be an important player in fluid pressure evolution and, hence, seismogenic fault movement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Petrography and isotope geochemical characteristics of H, O, S, Sr, and Nd have been described for basalts recovered from Hole 504B during Leg 111 of the Ocean Drilling Program. The petrographic and chemical features of the recovered basalts are similar to those obtained previously (DSDP Legs 69, 70, and 83); they can be divided into phyric (plagioclase-rich) and aphyric (Plagioclase- and clinopyroxene-rich) basalts and show low abundances of TiO2, Na2O, K2O, and Sr. This indicates that the basalts belong to Group D, comprising the majority of the upper section of the Hole 504B. The diopside-rich nature of the clinopyroxene phenocrysts and Ca-rich nature of the Plagioclase phenocrysts are also consistent with the preceding statement. The Sr and Nd isotope systematics (average 87Sr/86Sr = 0.70267 ± 0.00007 and average 143Nd/144Nd = 0.513157 ± 0.000041) indicate that the magma sources are isotopically heterogeneous, although the analyzed samples represent only the lowermost 200-m section of Hole 504B. The rocks were subjected to moderate hydrothermal alteration throughout the section recovered during Leg 111. Alteration is limited to interstices, microfractures, and grain boundaries of the primary minerals, forming chlorite, actinolite, talc, smectite, quartz, sphene, and pyrite. In harmony with the moderate alteration, the following alteration-sensitive parameters show rather limited ranges of variation: H2O = 1.1 ±0.2 wt%, dD = - 38 per mil ± 4 per mil, d180 = 5.4 per mil ± 0.3 per mil, total S = 562 ± 181 ppm, and d34S = 0.8 per mil ± 0.3 per mil. Based on these data, it was estimated that the hydrothermal fluids had dD and d180 values only slightly higher than those of seawater, the water/rock ratios were as low as 0.02-0.2, and the temperature of alteration was 300°-400°C. Sulfur exists predominantly as pyrite and in minor quantities as chalcopyrite. No primary monosulfide was detected. This and the d34S values of pyrite (d34S = 0.8 per mil) suggest that primary pyrrhotite was almost completely oxidized to pyrite by reaction with hydrothermal fluids containing very little sulfate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present results of a detailed mineralogical and geochemical study of the progressive hydrothermal alteration of clastic sediments recovered at ODP Site 858 in an area of active hydrothermal venting at the sedimented, axial rift valley of Middle Valley (northern Juan de Fuca Ridge). These results allow a characterization of newly formed phyllosilicates and provide constraints on the mechanisms of clay formation and controls of mineral reactions on the chemical and isotopic composition of hydrothermal fluids. Hydrothermal alteration at Site 858 is characterized by a progressive change in phyllosilicate assemblages with depth. In the immediate vent area, at Hole 858B, detrital layers are intercalated with pure hydrothermal precipitates at the top of the section, with a predominance of hydrothermal phases at depth. Sequentially downhole in Hole 858B, the clay fraction of the pure hydrothermal layers changes from smectite to corrensite to swelling chlorite and finally to chlorite. In three pure hydrothermal layers in the deepest part of Hole 858B, the clay minerals coexist with neoformed quartz. Neoformed and detrital components are clearly distinguished on the basis of morphology, as seen by SEM and TEM, and by their chemical and stable isotope compositions. Corrensite is characterized by a 24 Å stacking sequence and high Si- and Mg-contents, with Fe/(Fe+Mg) ratio of = 0.08. We propose that corrensite is a unique, possibly metastable, mineralogical phase and was precipitated directly from seawater-dominated hydrothermal fluids. Hydrothermal chlorite in Hole 858B has a stacking sequence of 14 Å with Fe/(Fe+Mg) ratios of ? 0.35. The chemistry and structure of swelling chlorite suggest that it is a corrensiteychlorite mixed-layer phase. The mineralogical zonation in Hole 858B is accompanied by a systematic decrease in d18O, reflecting both the high thermal gradients that prevail at Site 858 and extensive sediment-fluid interaction. Precipitation of the Mg-phyllosilicates in the vent region directly controls the chemical and isotopic compositions of the pore fluids. This is particularly evident by decreases in Mg and enrichments in deuterium and salinity in the pore fluids at depths at which corrensite and chlorite are formed. Structural formulae calculated from TEM-EDX analyses were used to construct clay-H2O oxygen isotope fractionation curves based on oxygen bond models. Our results suggest isotopic disequilibrium conditions for corrensite-quartz and swelling chlorite-quartz precipitation, but yield an equilibrium temperature of 300° C ± 30° for chlorite-quartz at 32 m below the surface. This estimate is consistent with independent estimates and indicates steep thermal gradients of 10-11°/m in the vent region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

40Ar-39Ar incremental heating experiments on a relatively unaltered basalt from Site 843 yield a crystallization age of 110 ± 2 Ma for the central Pacific Ocean igneous basement near Hawaii. Previous estimates of the age of the basement inferred by indirect methods and from radiometric dates of the South Hawaiian Seamounts are too young by 20-30 m.y. Phyllosilicate alteration minerals from veins in the Site 843 basalts define a Rb/Sr isochron with an age of 94.5 ± 0.5 Ma. The isochron records the last equilibration of the phyllosilicate minerals with a hydrothermal fluid at about 16 m.y. after the formation of the igneous basement. The last event recorded by calcite veins is the sealing of the crust by a sufficient thickness of sediment to impede the free circulation of seawater into the crust. The chemistry of the alteration minerals indicates the rare earth elements in the hydrothermal solutions were derived from alteration of the basalts and, furthermore, were transported in solution as metal species and carbonate complexes. Calcite with approximately seawater 87Sr/86Sr, but Sr contents too low to precipitate directly from seawater, is suggested to have formed at a late stage in the alteration history of the crust by the reaction of seawater with calcite precipitated earlier from basalt-dominated hydrothermal fluids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A suite of conjugate pore fluid and sediment samples were collected during Leg 169 of the ODP from within the clastic sedimentary sequences which host massive sulphides at Central Hill, Escanaba Trough (ODP Site 1038). We report the alkali element and boron, and Li and B isotope data for these samples. Relative to a reference site (Site 1037) located outside the zone of high heat flow, pore fluids from Site 1038 show a wide variation in Cl (300-800 mM), and have far higher concentrations of Li (up to 6.2 mM), B (up to 9.7 mM), Cs (up to 5.0 mM), and Rb (up to 97 mM). We show that the pore fluids are derived from hydrothermal circulation that has extended into the basement oceanic crust, with input of the alkali elements and B as the rising hydrothermal fluids interact geochemically with the overlying clastic sediments. There is, however, no marked depletion of these elements in the conjugate sediments, suggesting that there has been advective transport of fluids away from the primary hydrothermal reaction site. This is supported by modelling of the Li and B isotope systematics of the pore fluids, which shows that they record extensive formation of secondary minerals during cooling of the fluids from ~350 to ~20ºC. Precipitation of metal-rich sulphides would have occurred prior to the formation of these minerals, thus, the pore fluid Li and B isotope data can place important constraints on the locus of sulphide deposition beneath the seafloor at Escanaba.