72 resultados para Concert™
Resumo:
1) Our study addresses the role of non-genetic and genetic inheritance in shaping the adaptive potential of populations under a warming ocean scenario. We used a combined experimental approach (transgenerational plasticity and quantitative genetics) to partition the relative contribution of maternal vs. paternal (additive genetic) effects to offspring body size (a key component of fitness), and investigated a potential physiological mechanism (mitochondrial respiration capacities) underlying whole organism growth/size responses. 2) In very early stages of growth (up to 30 days), offspring body size of marine sticklebacks benefited from maternal transgenerational plasticity (TGP): offspring of mothers acclimated to17°C were larger when reared at 17°C, and offspring of mothers acclimated to 21°C were larger when reared at 21°C. The benefits of maternal TGP on body size were stronger and persisted longer (up to 60 days) for offspring reared in the warmer (21°C) environment, suggesting that maternal effects will be highly relevant for climate change scenarios in this system. 3) Mitochondrial respiration capacities measured on mature offspring (F1 adults) matched the pattern of TGP for juvenile body size, providing an intuitive mechanistic basis for the maternal acclimation persisting into adulthood. Size differences between temperatures seen at early growth stages remained in the F1 adults, linking offspring body size to maternal inheritance of mitochondria. 4) Lower maternal variance components in the warmer environment were mostly driven by mothers acclimated to ambient (colder) conditions, further supporting our tenet that maternal effects were stronger at elevated temperature. Importantly, all parent-offspring temperature combination groups showed genotype x environment (GxE) interactions, suggesting that reaction norms have the potential to evolve. 5) To summarise, transgenerational plasticity and genotype x environment interactions work in concert to mediate impacts of ocean warming on metabolic capacity and early growth of marine sticklebacks. TGP can buffer short-term detrimental effects of climate warming and may buy time for genetic adaptation to catch up, therefore markedly contributing to the evolutionary potential and persistence of populations under climate change.
Resumo:
A thick, apparently continuous section recording events of the latest Paleocene thermal maximum in a neritic setting was drilled at Bass River State Forest, New Jersey as part of ODP Leg 174AX [Miller, Sugarman, Browning et al., 1998]. Integrated nannofossil and magneto-stratigraphy provides a firm chronology supplemented by planktonic foraminiferal biostratigraphy. This chronologic study indicates that this neritic section rivals the best deep-sea sections in providing a complete record of late Paleocene climatic events. Carbon and oxygen isotopes measured on benthic foraminifera show a major (4.0% in carbon, 2.3% in oxygen) negative shift correlative with the global latest Paleocene carbon isotope excursion (CIE). A sharp increase in kaolinite content coincides with the isotope shift in the Bass River section, analogous to increases found in several other records. Carbon and oxygen isotopes remain low and kaolinite content remains high for the remainder of the depositional sequence above the CIE (32.5 ft, 9.9 m), which we estimate to represent 300-500 k.y. We interpret these data as indicative of an abrupt shift to a warmer and wetter climate along the North American mid-Atlantic coast, in concert with global events associated with the CIE.
Resumo:
We compile and compare data for the last 150,000 years from four deep-sea cores in the midlatitude zone of the Southern Hemisphere. We recalculate sea surface temperature estimates derived from foraminifera and compare these with estimates derived from alkenones and magnesium/calcium ratios in foraminiferal carbonate and with accompanying sedimentological and pollen records on a common absolute timescale. Using a stack of the highest-resolution records, we find that first-order climate change occurs in concert with changes in insolation in the Northern Hemisphere. Glacier extent and inferred vegetation changes in Australia and New Zealand vary in tandem with sea surface temperatures, signifying close links between oceanic and terrestrial temperature. In the Southern Ocean, rapid temperature change of the order of 6°C occurs within a few centuries and appears to have played an important role in midlatitude climate change. Sea surface temperature changes over longer periods closely match proxy temperature records from Antarctic ice cores. Warm events correlate with Antarctic events A1-A4 and appear to occur just before Dansgaard-Oeschger events 8, 12, 14, and 17 in Greenland.
Resumo:
The bulk magnetic mineral record from Lake Ohrid, spanning the past 637 kyr, reflects large-scale shifts in hydrological conditions, and, superimposed, a strong signal of environmental conditions on glacial-interglacial and millennial timescales. A shift in the formation of early diagenetic ferrimagnetic iron sulfides to siderites is observed around 320 ka. This change is probably associated with variable availability of sulfide in the pore water. We propose that sulfate concentrations were significantly higher before ~320 ka, due to either a higher sulfate flux or lower dilution of lake sulfate due to a smaller water volume. Diagenetic iron minerals appear more abundant during glacials, which are generally characterized by higher Fe/Ca ratios in the sediments. While in the lower part of the core the ferrimagnetic sulfide signal overprints the primary detrital magnetic signal, the upper part of the core is dominated by variable proportions of high- to low-coercivity iron oxides. Glacial sediments are characterized by high concentration of high-coercivity magnetic minerals (hematite, goethite), which relate to enhanced erosion of soils that had formed during preceding interglacials. Superimposed on the glacial-interglacial behavior are millennial-scale oscillations in the magnetic mineral composition that parallel variations in summer insolation. Like the processes on glacial-interglacial timescales, low summer insolation and a retreat in vegetation resulted in enhanced erosion of soil material. Our study highlights that rock-magnetic studies, in concert with geochemical and sedimentological investigations, provide a multi-level contribution to environmental reconstructions, since the magnetic properties can mirror both environmental conditions on land and intra-lake processes.
Resumo:
Productivity in the Arabian Sea is one of the highest in the world. It is controlled by seasonally reversing monsoonal wind-driven upwelling of nutrient-rich deeper waters which fuel phytoplankton growth. The detailed history of upwelling-induced productivity in the eastern Arabian Sea is unknown. Here we present paleoproductivity records from a composite sediment core at the millennial scale during the last 80 kyr B.P. These records are based on relative abundance counts of planktonic foraminifera and organic carbon contents, which are shown to mainly vary in concert. The eastern Arabian Sea upwelling-induced productivity was higher in the glacial period than in the Holocene, but it fell repeatedly on millennial timescales. These productivity declines occurred during cold events in the North Atlantic region, with the most pronounced changes prevailing during the Heinrich events. Hence, seasonal monsoon winds that drive upwelling-induced productivity in the east were weak when the North Atlantic was cold. These weak winds resulted in stratification of the water column, comparable to today's Arabian Sea stratification in the intermonsoonal period. Combining the new eastern with published western Arabian Sea results shows that the entire biological factory was severely diminished during the North Atlantic Heinrich events, and the seasonal productivity change in the Arabian Sea monsoon system was reduced with year-round low productivity.
Resumo:
The paleo-oceanography of the southeastern North Atlantic Ocean during the last 150,000 yr has been studied using biogenous and terrigenous components of hemipelagic sediments sampled close to the northwest African continental margin. Variations of oxygen isotope ratios in shells of benthic calcareous foraminifers in two cores allow the assignment of absolute ages to these cores (in the best case at 1000 yr increments). The uncorrected bulk sedimentation rates of the longest core range from 3.4 to 7.6 cm/ 1000 yr during Interglacial conditions, and from 6.5 to 9.9 cm/1000 yr during Glacial conditions; all other cores have given results of the same order of magnitude, but with generally increasing values towards the continental edge. The distribution of sediment components allow us to make inferences about paleo-oceanographic changes in this region. Frequencies of biogenic components from benthic organisms, oxygen isotope ratios measured in benthic calcareous foraminiferal shells, the total carbonate contents of the sediment and distributions of biogenic components from planktonic organisms often fluctuate in concert. However, all fluctuations which can be attributed to changes of the bottom water masses (North Atlantic Deep Water) seem to precede by several thousand years those which can be linked to changes of the surface water mass distributions or to changes of the climate over the neighboring land masses. Late Quaternary planktonic foraminiferal assemblages in the cores from the northwest African continental margin can be defined satisfactorily in the way that distributions of assemblages found in sediment surface samples from the northeast Atlantic Ocean have been explained. The distributions of assemblages in the northwest African cores can also be used to estimate past sea surface temperatures and salinities. The downcore record of these estimates reveals two warm periods during the last 150,000 yr, the lower one corresponding to the oxygen isotope stage 5 e (equivalent to the Eemian proper in Europe), the upper one to the younger half of the Holocene. Winter surface water temperatures during oxygen isotope stages 6, 4, 3, and 2 are remarkably constant in most cores, while summer sea surface temperatures during stage 3 reach values comparable to those of the warm periods during the Late Holocene and Eemian. Estimated winter sea surface temperatures range from > 16 °C to < 11°C, the summer sea surface temperatures from > 22 °C to < 15 °C during the last 150,000 yr. Estimates of the winter sea surface salinities fluctuate between 36.6? and 35.5?, the higher values being restricted to the warm periods since the penultimate Glacial. Estimates for sea surface temperatures and salinities for two cores from the center of today's coastal upwelling region show less pronounced fluctuations than the record of the open ocean cores in the case of the station 12379 off Cape Barbas, more pronounced in the case of station 12328 off Cape Blanc. Seasonal differences between winter and summer sea surface temperatures derived from the estimated temperatures are today more pronounced in the boundary region of the ocean to the continent than further away from the continent. The differences are generally higher during warm climatic periods of the last 150,000 yr than during cooler ones. The abundance of terrigenous grains in the coarse fractions generally decreases with increasing distance from the continental edge, and also from south to north. The dominant portion of the terrigenous detritus is carried out into the ocean during the relatively cool climatic periods (stage 6, 4, later part of stage 3, stage 2 and oldest part of stage 1). The enhanced precision of dating combined with the stratigraphic resolution of these high deposition rate cores make it clear that the peaks of the terrigenous input off this part of the northwest African continental margin occur simultaneously with times of rapid sea level fluctuations resulting from large volume changes of the large Glacial ice sheets.
Resumo:
Periplatform ooze is an admixture of pelagic carbonate and sediment derived from neritic carbonate platforms. Compositional variations of periplatform ooze allow the rectonstruction of past sea-level changes. Periplatform ooze formed during sea-level highstands is finer grained and richer in aragonit through the elevated input of material from the flooded platform compared to periplatform ooze formed during the episodes of lowered sea level. In many cases, however, the sea floor around carbonate platforms is subjected to bottom currents which are expected to affect sediment composition, i.e. through winnowing of the fine fraction. The interaction of sea-level driven highstand shedding and current impact on the formation of periplatform ooze is influenced or even distorted by changing current activity, an integrated study using seismic, hydroacoustic and sedimentological data has been performed on periplatform ooze deposited in the Inner Sea of the Maldives. The Miocene to Pleistocene succession of drift deposits is subdivided into nine units; limits of seismostratigraphic units correspond to changes or turnarounds in grain size trends in cores recovered at ODP Site 716 and NEOMA Site 1143. For the Pleistocene it can be shown how changes in grain size occur in concert with sea-level changes and changes of the monsoonal system, which is thought to be a major driver bottom currents in the Maldives. A clear hightstand shedding pattern only appears in the data at a time of of relaxation of monsoonal strength during the last 315 ky. Results imply (1) that drift sediments provide a potential target for analyzing past changes in oceanic currents and (2) that the ooze composition bears a mixed signal of input and physical winnowing at the sea floor.
Resumo:
We report d18O and minor element (Mg/Ca, Sr/Ca) data acquired by high-resolution, in situ secondary ion mass spectrometry (SIMS) from planktic foraminiferal shells and 100-500 µm sized diagenetic crystallites recovered from a deep-sea record (ODP Site 865) of the Paleocene-Eocene thermal maximum (PETM). The d18O of crystallites (~1.2 per mil Pee Dee Belemnite (PDB)) is ~4.8 per mil higher than that of planktic foraminiferal calcite (-3.6 per mil PDB), while crystallite Mg/Ca and Sr/Ca ratios are slightly higher and substantially lower than in planktic foraminiferal calcite, respectively. The focused stratigraphic distribution of the crystallites signals an association with PETM conditions; hence, we attribute their formation to early diagenesis initially sourced by seafloor dissolution (burndown) ensued by reprecipitation at higher carbonate saturation. The Mg/Ca ratios of the crystallites are an order of magnitude lower than those predicted by inorganic precipitation experiments, which may reflect a degree of inheritance from "donor" phases of biogenic calcite that underwent solution in the sediment column. In addition, SIMS d18O and electron microprobe Mg/Ca analyses that were taken within a planktic foraminiferal shell yield parallel increases along traverses that coincide with muricae blades on the chamber wall. The parallel d18O and Mg/Ca increases indicate a diagenetic origin for the blades, but their d18O value (-0.5 per mil PDB) is lower than that of crystallites suggesting that these two phases of diagenetic carbonate formed at different times. Finally, we posit that elevated levels of early diagenesis acted in concert with sediment mixing and carbonate dissolution to attenuate the d18O decrease signaling PETM warming in "whole-shell" records published for Site 865.
Resumo:
For much of the Mesozoic record there has been an inconclusive debate on the possible global significance of isotopic proxies for environmental change and of sequence stratigraphic depositional sequences. We present a carbon and oxygen isotope and elemental record for part of the Early Jurassic based on marine benthic and nektobenthic molluscs and brachiopods from the shallow marine succession of the Cleveland Basin, UK. The invertebrate isotope record is supplemented with carbon isotope data from fossil wood, which samples atmospheric carbon. New data elucidate two major global carbon isotope events, a negative excursion of ~2 per mil at the Sinemurian-Pliensbachian boundary, and a positive excursion of ~2 per mil in the Late Pliensbachian. The Sinemurian-Pliensbachian boundary event is similar to the slightly younger Toarcian Oceanic Anoxic Event and is characterized by deposition of relatively deepwater organic-rich shale. The Late Pliensbachian strata by contrast are characterized by shallow marine deposition. Oxygen isotope data imply cooling locally for both events. However, because deeper water conditions characterize the Sinemurian-Pliensbachian boundary in the Cleveland Basin the temperature drop is likely of local significance; in contrast a cool Late Pliensbachian shallow seafloor agrees with previous inference of partial icehouse conditions. Both the large-scale, long-term and small-scale, short-duration isotopic cycles occurred in concert with relative sea level changes documented previously from sequence stratigraphy. Isotope events and the sea level cycles are concluded to reflect processes of global significance, supporting the idea of an Early Jurassic in which cyclic swings from icehouse to greenhouse and super greenhouse conditions occurred at timescales from 1 to 10 Ma.
Resumo:
Past changes in plant and landscape diversity can be evaluated through pollen analysis, however, pollen based diversity indexes are potentially biased by differential pollen production and deposition. Studies examining the relationship between pollen and landscape diversity are therefore needed. The aim of this study is to evaluate how different pollen based indexes capture aspects of landscape diversity. Pollen counts were obtained from surface samples of 50 small to medium sized lakes in Brandenburg (Northeast Germany) and compiled into two sets, with one containing all pollen counts from terrestrial plants and the second restricted to wind-pollinated taxa. Both sets were adjusted for the pollen production/dispersal bias using the REVEALS model. A high resolution biotope map was used to extract the density of total biotopes and different biotopes per area as parameters describing landscape diversity. In addition tree species diversity was obtained from forest inventory data. The Shannon index and the number of taxa in a sample of 10 pollen grains are highly correlated and provide a useful measure of pollen type diversity which corresponds best to landscape diversity within one km of the lake and the proportion of non-forested area within seven km. Adjustments of the pollen production/dispersal bias only slightly improve the relationships between pollen diversity and landscape diversity for the restricted dataset as well as for the forest inventory data and corresponding pollen types. Using rarefaction analysis, we propose the following convention: pollen type diversity is represented by the number of types in a small sample (low count e.g. 10), pollen type richness is the number of types in a large sample (high count e.g. 500) and pollen sample evenness is characterized by the ratio of the two. Synthesis. Pollen type diversity is a robust index that captures vegetation structure and landscape diversity. It is ideally suited for between site comparisons as it does not require high pollen counts. In concert with pollen type richness and evenness, it helps evaluating the effect of climate change and human land use on vegetation structure on long timescales.
Resumo:
In oceans, estuaries, and rivers, nitrification is an important nitrate source, and stable isotopes of nitrate are often used to investigate recycling processes (e.g. remineralisation, nitrification) in the water column. Nitrification is a two-step process, where ammonia is oxidised via nitrite to nitrate. Nitrite usually does not accumulate in natural environments, which makes it difficult to study the single isotope effect of ammonia oxidation or nitrite oxidation in natural systems. However, during an exceptional flood in the Elbe River in June 2013, we found a unique co-occurrence of ammonium, nitrite, and nitrate in the water column, returning towards normal summer conditions within 1 week. Over the course of the flood, we analysed the evolution of d15N-[NH4]+ and d15N-[NO2]- in the Elbe River. In concert with changes in suspended particulate matter (SPM) and d15N SPM, as well as nitrate concentration, d15N-NO3 - and d18O-[NO3] -, we calculated apparent isotope effects during net nitrite and nitrate consumption. During the flood event, > 97 % of total reactive nitrogen was nitrate, which was leached from the catchment area and appeared to be subject to assimilation. Ammonium and nitrite concentrations increased to 3.4 and 4.4 µmol/l, respectively, likely due to remineralisation, nitrification, and denitrification in the water column. d15N-[NH4]+ values increased up to 12 per mil, and d15N-[NO2]- ranged from -8.0 to -14.2 per mil. Based on this, we calculated an apparent isotope effect 15-epsilon of -10.0 ± 0.1 per mil during net nitrite consumption, as well as an isotope effect 15-epsilon of -4.0 ± 0.1 per mil and 18-epsilon of -5.3 ± 0.1 per mil during net nitrate consumption. On the basis of the observed nitrite isotope changes, we evaluated different nitrite uptake processes in a simple box model. We found that a regime of combined riparian denitrification and 22 to 36 % nitrification fits best with measured data for the nitrite concentration decrease and isotope increase.
Resumo:
Nitrogen isotopes of chlorins, degradation products of chlorophyll, reflect the isotopic composition of nutrient N utilized by marine phytoplankton communities. Here we show that in sediments of the eastern Mediterranean Pleistocene and Holocene, values of d15N for chlorins and total nitrogen vary in concert, with a consistent offset of ~5 per mil reflecting the fractionation imparted during chlorophyll biosynthesis. Samples from the Integrated Ocean Drilling Program Sites 964 and 969 were analyzed at a sampling resolution of ~4-10 cm, clustered around sapropel events 2, 3, 4 and 5 (~100-170 ka). In low organic content sediments, chlorin values of ~0 per mil coincident with total nitrogen values of ~+ 5 per mil indicate that the latter reflects the original biomass and is not a consequence of diagenetic isotope enrichment. In sapropel horizons, the chlorin and total nitrogen values are 5 per mil more negative (~-5 per mil and ~ 0 per mil, respectively), resembling previously-reported, modern-day water-column particulates (~0 per mil). We suggest that nutrient conditions in the Eastern Mediterranean correspond to three scenarios and that the similarity between sapropel and modern-day bulk d15N is coincidental. Organic-poor marl sediments formed under oligotrophic conditions where surface productivity resulted from upwelling of Atlantic-sourced nitrate. Sapropels were characterized by enhanced diazotrophy that was likely fueled by increased riverine P fluxes to surface waters. Present-day conditions are dominated by anthropogenic N sources. These scenarios agree with a model of sapropel formation in which stratification caused by increased fresh-water inputs led to N fixation due to P:N nutrient imbalance. Enhanced production combined with stratification promoted and maintained anoxic deep waters, consequently increasing organic matter preservation. Such a model may be relevant to interpreting other episodes of intense organic matter deposition in past oceans.