205 resultados para Caquetaia spectabilis
Resumo:
Cores from four Ocean Drilling Program (ODP) sites were examined for planktonic foraminifers. One sample per core (from core-catchers in Holes 806B and 807B and from Section 4 in Holes 847B and 852B) was examined through the interval representing the last 5.8 m.y. Sites 806 (0°19.1'N; 159°21.7'E) and 847 (0o12.1'N; 95°19.2'W) are beneath the equatorial divergence zone. Sites 807 (3°36.4'N; 156°37.5'E) and 852 (5°19.6'N; 110°4.6'W) are located north of the equator in the convergence zone created by the interaction of the westward-flowing South Equatorial Current (SEC) and the eastward-flowing North Equatorial Countercurrent (NECC). Specimens were identified to species and then grouped according to depth habitat and trophic level. Species richness and diversity were also calculated. Tropical neogloboquadrinids have been more abundant in the eastern than in the western equatorial Pacific Ocean throughout the last 5.8 m.y. During the mid-Pliocene (3.8-3.2 Ma), their abundance increased at all sites, while during the Pleistocene (after ~ 1.6 Ma), they expanded in the east and declined in the west. This suggests an increase in surface-water productivity across the Pacific Ocean during the closing of the Central American seaway and an exacerbation of the productivity asymmetry between the eastern and western equatorial regions during the Pleistocene. This faunal evidence agrees with eolian grain-size data (Hovan, 1995) and diatom flux data (Iwai, this volume), which suggest increases in tradewind strength in the eastern equatorial Pacific that centered around 3.5 and 0.5 Ma. The present longitudinal zonation of thermocline dwelling species, a response to the piling of warm surface water in the western equatorial region of the Pacific, seems to have developed after 2.4 Ma, not directly after the closing of the Panama seaway (3.2 Ma). Apparently, after 2.4 Ma, the piling warm water in the west overwhelmed the upwelling of nutrients into the photic zone in that region, creating the Oceanographic asymmetry that exists in the modern tropical Pacific and is reflected in the microfossil record. In the upper Miocene and lower Pliocene sediments, the ratio of thermocline-dwelling species to mixed-layer dwellers is 60%:40%. During the mid-Pliocene, the western sites became 40% thermocline and 60% mixed-layer dwellers. Subsequent to -2.4 Ma, the asymmetry increased to 20%: 80% in the west and the reverse in the east. This documents the gradual thickening of the warm-water layer piled up in the western tropical Pacific over the last 5.8 m.y. and reveals two "steps" in the biotic trend that can be associated with specific events in the physical environment.
Resumo:
At Ocean Drilling Program Hole 748C in the Southern Indian Ocean, a total of 171 Late Cretaceous dinoflagellate taxa were encountered in 38 productive samples from Cores 120-748C-27R through 120-748C-62R (407-740 mbsf). Four provisional dinoflagellate assemblage zones and five subzones were recognized based on the character of the dinoflagellate flora and the first/last occurrences of some key species. Isabelidinium korojonense and Nelsoniella aceras occur in Zone A together with Oligosphaeridium pulcherrimum and Trithyrodinium suspect urn. Zone B was delineated by the total range of Odontochitina cribropoda. Zone C was separated from Zone B by the presence of Satyrodinium haumuriense, and Zone D is dominated by new taxa. The dinocyst assemblages bear a strong affinity to Australian assemblages. Paleoenvironmental interpretations based mainly on dinocysts suggest that during the ?Santonian-Campanian to the Maestrichtian this portion of the Kerguelen Plateau was a shallow submerged plateau, similar to nearshore to offshore to upper slope environments with water depths of tens to hundreds of meters, but isolated from the major continents of the Southern Hemisphere. Starting perhaps in the late Cenomanian (Mohr and Gee, 1992, doi:10.2973/odp.proc.sr.120.196.1992), the Late Cretaceous transgression over the plateau reached its maximum during the late Campanian. The plateau may have been exposed above sea level and subjected to weathering during the latest Maestrichtian. The studied dinocyst assemblages characterized by species of Amphidiadema, Nelsoniella, Satyrodinium, and Xenikoon together with abundant Chatangiella (the large-size species) and Isabelidinium suggest that a South Indian Province (tentatively named the Helby suite) may have existed during the Campanian-Maestrichtian in comparison with the other four provinces of Lentin and Williams. One new genus, three new species, and two new subspecies of dinocysts are described.
Resumo:
The conservation of birds and their habitats is essential to maintain well-functioning ecosystems including human-dominated habitats. In simplified or homogenized landscapes, patches of natural and semi-natural habitat are essential for the survival of plant and animal populations. We compared species composition and diversity of trees and birds between gallery forests, tree islands and hedges in a Colombian savanna landscape to assess how fragmented woody plant communities affect forest bird communities and how differences in habitat characteristics influenced bird species traits and their potential ecosystem function. Bird and tree diversity was higher in forests than in tree islands and hedges. Soil depth influenced woody species distribution, and canopy cover and tree height determined bird species distribution, resulting in plant and bird communities that mainly differed between forest and non-forest habitat. Bird and tree species and traits widely co-varied. Bird species in tree islands and hedges were on average smaller, less specialized to habitat and more tolerant to disturbance than in forest, but dietary differences did not emerge. Despite being less complex and diverse than forests, hedges and tree islands significantly contribute to the conservation of forest biodiversity in the savanna matrix. Forest fragments remain essential for the conservation of forest specialists, but hedges and tree islands facilitate spillover of more tolerant forest birds and their ecological functions such as seed dispersal from forest to the savanna matrix.
Resumo:
Als man nach dem ersten Weltkrieg im verkleinerten Deutschland nach der Möglichkeit von Neulandgewinnung suchte, dachte man auch an eineTrockenlegung der ostpreußischen Haffe. Aus diesem Anlaß wurden umfangreiche Bohrungen ausgeführt, um ein möglichst genaues Bild vom Untergrunde der Haffe zu bekommen. Auf Veranlassung der Preußischen Geologischen Landesanstalt wurde ich mit der Untersuchung der Diatomeen in den Bohrproben beauftragt. Die Arbeit wurde 1934 begonnen und Ende 1937 wurde der letzte Arbeitsbericht abgeliefert. Die beabsichtigte Veröffentlichung ist bisher unterblieben, weil die Druckvorlagen später verloren gegangen sind. Seitdem sind über die Haffuntersuchungen mehrere Teilergebnisse veröffentlicht worden, von denen hier schon wegen der Terminologie die pollenanalytischen Arbeiten von L. HEIN (1941) und HUGO GROSS (1941) erwähnt seien, auf die im Abschnitt Il 2e näher eingegangen wird. Bei der geologischen Auswertung war Zurückhaltung geboten; denn es wäre gewagt, allein aus der Perspektive der Diatomeenforschung endgültige Aussagen machen zu wollen. Darum habe ich mich bemüht, das Material so weit aufzuschließen, daß es Geologen später auch bei veränderter Fragestellung auswerten können. "Die Theorien wechseln, aber die Tatsachen bleiben." Der Initiative des Herrn Prof. Dr. K. GRIPP und der finanziellen Hilfe der Deutschen Forschungsgemeinschaft ist es zu verdanken, daß die vorliegende Arbeit im Druck erscheinen kann. Zusammenfassung 1. Nur in den alluvialen Schichten des Kurischen Haffs wurden Diatomeen gefunden. 2. Die Diatomeenflora des Kurischen Haffs besteht zur Hauptsache aus Süßwasserformen. 3. Salzwasserformen finden sich in allen Schichten verstreut unter der Süßwasserflora. Wenn sie auch nach Zahl der Arten in manchen Proben einen erheblichen Prozentsatz der Flora ausmachen, so ist doch die Zahl der Individuen stets so gering, daß man nirgends von einer Brackwasserflora sprechen kann. 4. Die Süßwasserflora besteht in den unteren Schichten vorwiegend aus Grundformen; und zwar machen die epiphytischen Bewohner flacher Sumpfgewässer einen großen Teil der Flora aus. 5. In einzelnen Bohrungen kommt in den untersten alluvialen Schichten eine Grundflora mit zahlreichen Mastogloien vor. Dies sind die ältesten diatomeenführenden Schichten, entstanden in isolierten Sumpfgewässern. 6. Die übrigen Schichten mit überwiegender Grundflora sind vermutlich Ablagerungen der Ancyluszeit. 7. Die oberen Schichten, in denen die Planktondiatomeen überwiegen, dürften größtenteils der Litorina-Transgressionszeit angehören, jedoch ist der Transgressions-Kontakt nicht klar zu erkennen. 8. Das Ende der Litorinazeit ist noch weniger erkennbar, da eine grundsätzliche Veränderung der Flora nach oben nicht zu beobachten ist. 9. Die ostbaltischen Charakterformen sind in allen Schichten vertreten.
Resumo:
Bulk carbonate content, planktic and benthic foraminiferal assemblages, stable isotope compositions of bulk carbonate and Nuttallides truempyi (benthic foraminifera), and non-carbonate mineralogy were examined across ~30 m of carbonate-rich Paleogene sediment at Deep Sea Drilling Project (DSDP) Site 259, on Perth Abyssal Plain off Western Australia. Carbonate content, mostly reflecting nannofossil abundance, ranges from 3 to 80% and generally exceeds 50% between 35 and 57 mbsf. A clay-rich horizon with a carbonate content of about 37% occurs between 55.17 and 55.37 mbsf. The carbonate-rich interval spans planktic foraminiferal zones P4c to P6b (~57-52 Ma), with the clay-rich horizon near the base of our Zone P5 (upper)-P6b. Throughout the studied interval, benthic species dominate foraminiferal assemblages, with scarce planktic foraminifera usually of poor preservation and limited species diversity. A prominent Benthic Foraminiferal Extinction Event (BFEE) occurs across the clay-rich horizon, with an influx of large Acarinina immediately above. The delta13C records of bulk carbonate and N. truempyi exhibit trends similar to those observed in upper Paleocene-lower Eocene (~57-52 Ma) sediment from other locations. Two successive decreases in bulk carbonate and N. truempyi delta13C of 0.5 and 1.0? characterize the interval at and immediately above the BFEE. Despite major changes in carbonate content, foraminiferal assemblages and carbon isotopes, the mineralogy of the non-carbonate fraction consistently comprises expanding clay, heulandite (zeolite), quartz, feldspar (sodic or calcic), minor mica, and pyrolusite (MnO2). The uniformity of this mineral assemblage suggests that Site 259 received similar non-carbonate sediment before, during and after pelagic carbonate deposition. The carbonate plug at Site 259 probably represents a drop in the CCD from ~57 to 52-51 Ma, as also recognized at other locations.
Resumo:
The impact of an asteroid at the Cretaceous/Paleogene (K/Pg) boundary triggered dramatic biotic, biogeochemical and sedimentological changes in the oceans that have been intensively studied. Paleo-biogeographical differences in the biotic response to the impact and its environmental consequences, however, have been less well documented. We present a high-resolution analysis of benthic foraminiferal assemblages at Southern Ocean ODP Site 690 (Maud Rise, Weddell Sea, Antarctica). At this high latitude site, late Maastrichtian environmental variability was high, but benthic foraminiferal assemblages were not less diverse than at lower latitudes, in contrast to those of planktic calcifiers. Also in contrast to planktic calcifiers, benthic foraminifera did not suffer significant extinction at the K/Pg boundary, but show transient assemblage changes and decreased diversity. At Site 690, the extinction rate was even lower (~3%) than at other sites. The benthic foraminiferal accumulation rate varied little across the K/Pg boundary, indicating that food supply to the sea floor was affected to a lesser extent than at lower latitude sites. Compared to Maastrichtian assemblages, Danian assemblages have a lower diversity and greater relative abundance of heavily calcified taxa such as Stensioeina beccariiformis and Paralabamina lunata. This change in benthic foraminiferal assemblages could reflect post-extinction proliferation of different photosynthesizers (thus food for the benthos) than those dominant during the Late Cretaceous, therefore changes in the nature rather than in the amount of the organic matter supplied to the seafloor. However, severe extinction of pelagic calcifiers caused carbonate supersaturation in the oceans, thus might have given competitive advantage to species with large, heavily calcified tests. This indirect effect of the K/Pg impact thus may have influenced the deep-sea dwellers, documenting the complexity of the effects of major environmental disturbance.
Resumo:
Deep-sea benthic foraminifera show important but transient assemblage changes at the Cretaceous/Paleogene (K/Pg) boundary, when many biota suffered severe extinction. We quantitatively analyzed benthic foraminiferal assemblages from lower bathyal-upper abyssal (1500-2000 m) northwest Pacific ODP Site 1210 (Shatsky Rise) and compared the results with published data on assemblages at lower bathyal (~ 1500 m) Pacific DSDP Site 465 (Hess Rise) to gain insight in paleoecological and paleoenvironmental changes at that time. At both sites, diversity and heterogeneity rapidly decreased across the K/Pg boundary, then recovered. Species assemblages at both sites show a similar pattern of turnover from the uppermost Maastrichtian into the lowermost Danian: 1) The relative abundance of buliminids (indicative of a generally high food supply) increases towards the uppermost Cretaceous, and peaks rapidly just above the K/Pg boundary, coeval with a peak in benthic foraminiferal accumulation rate (BFAR), a proxy for food supply. 2) A peak in relative abundance of Stensioeina beccariiformis, a cosmopolitan form generally more common at the middle than at the lower bathyal sites, occurs just above the buliminid peak. 3) The relative abundance of Nuttallides truempyi, a more oligotrophic form, decreases at the boundary, then increases above the peak in Stensioeina beccariiformis. The food supply to the deep sea in the Pacific Ocean thus apparently increased rather than decreased in the earliest Danian. The low benthic diversity during a time of high food supply indicates a stressed environment. This stress might have been caused by reorganization of the planktic ecosystem: primary producer niches vacated by the mass extinction of calcifying nannoplankton may have been rapidly (<10 kyr) filled by other, possibly opportunistic, primary producers, leading to delivery of another type of food, and/or irregular food delivery through a succession of opportunistic blooms. The deep-sea benthic foraminiferal data thus are in strong disagreement with the widely accepted hypothesis that the global deep-sea floor became severely food-depleted following the K/Pg extinction due to the mass extinction of primary producers ("Strangelove Ocean Model") or to the collapse of the biotic pump ("Living Ocean Model").
Resumo:
Benthic foraminiferal biofacies may vary independently of water depth and water mass; however, calibration of biofacies and stratigraphic ranges with independent paleodepth estimates allows reconstruction of age-depth patterns applicable throughout the deep Atlantic (Tjalsma and Lohmann, 1983). We have attempted to test these faunal calibrations in a continental margin setting, reconstructing Eocene benthic foraminiferal distributions along a dip section afforded by the New Jersey Transect (DSDP Sites 612, 108, 613). The following independent estimates of Eocene depths for the transect were obtained by "backtracking," "backstripping," and by assuming increasing depth downdip ("paleoslope"): Site 612, near the middle/lower bathyal boundary (about 1000 m); Site 108, in the middle bathyal zone (about 1600 m); and Site 613, near the lower bathyal/upper abyssal boundary (about 2000 m). Within uncertainties of backtracking (hundreds of meters), these estimates agree with estimates of paleodepth based on comparison of the New Jersey margin biofacies with other backtracked faunas. The stratigraphic ranges of many benthic taxa correspond to those found at other Atlantic DSDP sites. The major biofacies patterns show: (1) a depth dichotomy between an early to middle Eocene Nuttallides truempyidominated biofacies (greater than 2000 m) and a Lenticulina-Osangularia-Alabamina cf. dissonata biofacies (1000- 2000 m); and (2) a difference between a middle and a late Eocene biofacies at Site 612. The faunal boundary at about 2000 m, between bathyal and abyssal zones, occurs not only on the margin, but also throughout the deep Atlantic. The faunal change between the middle and late Eocene at Site 612 was due to a decrease of Lenticulina spp., the local disappearance of N. truempyi, and establishment of a Bulimina alazanensis-Gyroidinoides spp. biofacies. Although this change could be attributed to local paleoceanographic or water-depth changes, we argue that it is the bathyal expression of a global deep-sea benthic foraminiferal change which occurred across the middle/late Eocene boundary.
Resumo:
Upper abyssal to lower bathyal benthic foraminifers from ODP Sites 689 (present water depth 2080 m) and 690 (present water depth 2941 m) on Maud Rise (eastern Weddell Sea, Antarctica) are reliable indicators of Maestrichtian through Neogene changes in the deep-water characteristics at high southern latitudes. Benthic foraminiferal faunas were divided into eight assemblages, with periods of faunal change at the early/late Maestrichtian boundary (69 Ma), at the early/late Paleocene boundary (62 Ma), in the latest Paleocene (57.5 Ma), in the middle early Eocene to late early Eocene (55-52 Ma), in the middle middle Eocene (46 Ma), in the late Eocene (38.5 Ma), and in the middle-late Miocene (14.9-11.5 Ma). These periods of faunal change may have occurred worldwide at the same time, although specific first and last appearances of deep-sea benthic foraminifers are commonly diachronous. There were minor faunal changes at the Cretaceous/Tertiary boundary (less than 14?7o of the species had last appearances at Site 689, less than 9% at Site 690). The most abrupt benthic foraminiferal faunal event occurred in the latest Paleocene, when the diversity dropped by 50% (more than 35% of species had last appearances) over a period of less than 25,000 years; after the extinction the diversity remained low for about 350,000 years. The highest diversities of the post-Paleocene occurred during the middle Eocene; from that time on the diversity decreased steadily at both sites. Data on faunal composition (percentage of infaunal versus epifaunal species) suggest that the waters bathing Maud Rise were well ventilated during the Maestrichtian through early Paleocene as well as during the latest Eocene through Recent. The waters appeared to be less well ventilated during the late Paleocene as well as the late middle through early late Eocene, with the least degree of ventilation during the latest Paleocene through early Eocene. The globally recognized extinction of deep-sea benthic foraminifers in the latest Paleocene may have been caused by a change in formational processes of the deep to intermediate waters of the oceans: from formation of deep waters by sinking at high latitudes to formation of deep to intermediate water of the oceans by evaporation at low latitudes. Benthic foraminiferal data (supported by carbon and oxygen isotopic data) suggest that there was a short period of intense formation of warm, salty deep water at the end of the Paleocene (with a duration of about 0.35 m.y.), and that less intense, even shorter episodes might have occurred during the late Paleocene and early Eocene. The faunal record from the Maud Rise sites agrees with published faunal and isotopic records, suggesting cooling of deep to intermediate waters in the middle through late Eocene.
Resumo:
A distinctive low-carbonate interval interrupts the continuous limestone-marl alternation of the deep-marine Gorrondatxe section at the early Lutetian (middle Eocene) C21r/C21n Chron transition. The interval is characterized by increased abundance of turbidites and kaolinite, a 3 per mil decline in the bulk d13C record, a >1 per mil decline in benthic foraminiferal d13C followed by a gradual recovery, a distinct deterioration in foraminiferal preservation, high proportions of warm-water planktic foraminifera and opportunistic benthic foraminifera, and reduced trace fossil and benthic foraminiferal diversity, thus recording a significant environmental perturbation. The onset of the perturbation correlates with the C21r-H6 event recently defined in the Atlantic and Pacific oceans, which caused a 2°C warming of the seafloor and increased carbonate dissolution. The perturbation was likely caused by the input of 13C-depleted carbon into the ocean-atmosphere system, thus presenting many of the hallmarks of Paleogene hyperthermal deposits. However, from the available data it is not possible to conclusively state that the event was associated with extreme global warming. Based on our analysis, the perturbation lasted 226 kyr, from 47.44 to 47.214 Ma, and although this duration suggests that the triggering mechanism may have been similar to that of the Paleocene-Eocene Thermal Maximum (PETM), the magnitude of the carbon input and the subsequent environmental perturbation during the early Lutetian event were not as severe as in the PETM.
Resumo:
Macrobenthic associations were investigated at 29 sampling stations with a semi-quantitative Agassiz trawl, ranging from the South Patagonian Icefield to the Straits of Magellan in the South Chilean fjord system. A total of 1,895 individuals belonging to 131 species were collected. 19 species belong to colonial organisms, mainly Bryozoa (17 species) and Octocorallia (2 species). The phylum Echinodermata was the most diverse in species number (47 species), with asteroids (25 species) and ophiuroids (13 species) being the best represented within this taxon. Polychaeta was the second dominant group in terms of species richness (46 species). Multidimensional scaling ordination (MDS) separated two station groups, one related to fjords and channels off the South Patagonian Icefield and the second one to stations surrounding the Straits of Magellan. 45 species account for 90% of the dissimilarity between these two groups. These differences can mainly be explained by the influence of local environmental conditions determined by processes closely related to the pres- ence/absence of glaciers. Abiotic parameters such as water depth, type of sediment and chemical features of the superficial sediment were not correlated with the numbers of individuals caught by the Agassiz trawl in each group of sampling stations.