957 resultados para Bellingshausen Sea, ridge-groove province: ridge


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The late Neogene was a time of cryosphere development in the northern hemisphere. The present study was carried out to estimate the sea surface temperature (SST) change during this period based on the quantitative planktonic foraminiferal data of 8 DSDP sites in the western Pacific. Target factor analysis has been applied to the conventional transfer function approach to overcome the no-analog conditions caused by evolutionary faunal changes. By applying this technique through a combination of time-slice and time-series studies, the SST history of the last 5.3 Ma has been reconstructed for the low latitude western Pacific. Although the present data set is close to the statistical limits of factor analysis, the clear presence of sensible variations in individual SST time-series suggests the feasibility and reliability of this method in paleoceanographic studies. The estimated SST curves display the general trend of the temperature fluctuations and reveal three major cool periods in the late Neogene, i.e. the early Pliocene (4.7 3.5 Ma), the late Pliocene (3.1-2.7 Ma), and the latest Pliocene to early Pleistocene (2.2-1.0 Ma). Cool events are reflected in the increase of seasonality and meridional SST gradient in the subtropical area. The latest Pliocene to early Pleistocene cooling is most important in the late Neogene climatic evolution. It differs from the previous cool events in its irreversible, steplike change in SST, which established the glacial climate characteristic of the late Pleistocene. The winter and summer SST decreased by 3.3-5.4°C and 1.0 2.1C in the subtropics, by 0.9°C and 0.6C in the equatorial region, and showed little or no cooling in the tropics. Moreover, this cooling event occurred as a gradual SST decrease during 2.2 1.0 Ma at the warmer subtropical sites, while that at cooler subtropical site was an abrupt SST drop at 2.2 Ma. In contrast, equatorial and tropical western Pacific experienced only minor SST change in the entire late Neogene. In general, subtropics was much more sensitive to climatic forcing than tropics and the cooling events were most extensive in the cooler subtropics. The early Pliocene cool periods can be correlated to the Antarctic ice volume fluctuation, and the latest Pliocene early Pleistocene cooling reflects the climatic evolution during the cryosphere development of the northern hemisphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed record of the strontium-87 to strontium-86 ratio in seawater during the last 100 million years was determined by measuring this ratio in 137 well-preserved and well-dated fossil foraminifera samples. Sample preservation was evaluated from scanning electron microscopy studies, measured strontium-calcium ratios, and pore water strontium isotope ratios. The evolution of the strontium isotopic ratio in seawater offers a means to evaluate long-term changes in the global strontium isotope mass balance. Results show that the marine strontium isotope composition can be used for correlating and dating well-preserved authigenic marine sediments throughout much of the Cenozoic to a precision of +/- 1 million years. The strontium-87 to strontium-86 ratio in seawater increased sharply across the Cretaceous/Tertiary boundary, but this feature is not readily explained as strontium input from a bolide impact on land.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extent to which the spatial distribution of marine planktonic microbes is controlled by local environmental selection or dispersal is poorly understood. Our ability to separate the effects of these two biogeographic controls is limited by the enormous environmental variability both in space and through time. To circumvent this limitation, we analyzed fossil diatom assemblages over the past ~1.5 million years from the world oceans and show that these eukaryotic microbes are not limited by dispersal. The lack of dispersal limitation in marine diatoms suggests that the biodiversity at the microbial level fundamentally differs from that of macroscopic animals and plants for which geographic isolation is a common component of speciation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compressional (Vp) and shear (Vs) wave velocities have been measured to 1.0 kbar for 14 cores of well-consolidated sedimentary rock from Atlantic and Pacific sites of the Deep Sea Drilling Project. The range of VP (2.05-5.38 km/sec at 0.5 kbar) shows significant overlap with the range of oceanic layer-2 seismic velocities determined by marine refraction surveys, suggesting that sedimentary rocks may, in some regions, constitute the upper portion of layer 2. Differing linear relationships between VP and Vs for basalts and sedimentary rocks, however, may provide a method of resolving layer-2 composition. This is illustra ted for a refraction survey site on the flank of the Mid-Atlantic Ridge where layer-2 velocities agree with basalt, and two sites on the Saya de Malha Bank in the Indian Ocean where layer-2 velocities appear to represent sedimentary rock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formation of the Cretaceous Caribbean plateau, including the komatiites of Gorgona, has been linked to the currently active Galápagos hotspot. We use Hf-Nd isotopes and trace element data to characterise both the Caribbean plateau and the Galápagos hotspot, and to investigate the relationship between them. Four geochemical components are identified in the Galápagos mantle plume: two 'enriched' components with epsilon-Hf and epsilon-Nd similar to enriched components observed in other mantle plumes, one moderately enriched component with high Nb/Y, and a fourth component which most likely represents depleted MORB source mantle. The Caribbean plateau basalt data form a linear array in Hf-Nd isotope space, consistent with mixing between two mantle components. Combined Hf-Nd-Pb-Sr-He isotope and trace element data from this study and the literature suggest that the more enriched Caribbean end member corresponds to one or both of the enriched components identified on Galápagos. Likewise, the depleted end member of the array is geochemically indistinguishable from MORB and corresponds to the depleted component of the Galápagos system. Enriched basalts from Gorgona partially overlap with the Caribbean plateau array in epsilon-Hf vs. epsilon-Nd, whereas depleted basalts, picrites and komatiites from Gorgona have a high epsilon-Hf for a given epsilon-Nd, defining a high-epsilon-Hf depleted end member that is not observed elsewhere within the Caribbean plateau sequences. This component is similar, however, in terms of Hf-Nd-Pb-He isotopes and trace elements to the depleted plume component recognised in basalts from Iceland and along the Reykjanes Ridge. We suggest that the Caribbean plateau represents the initial outpourings of the ancestral Galápagos plume. Absence of a moderately enriched, high Nb/Y component in the older Caribbean plateau (but found today on the island of Floreana) is either due to changing source compositions of the plume over its 90 Ma history, or is an artifact of limited sampling. The high-epsilon-Hf depleted component sampled by the Gorgona komatiites and depleted basalts is unique to Gorgona and is not found in the Caribbean plateau. This may be an indication of the scale of heterogeneity of the Caribbean plateau system; alternatively Gorgona may represent a separate oceanic plateau derived from a completely different Pacific plume, such as the Sala y Gomez.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obtaining long, continuous, and undisturbed sections of unconsolidated Neogene deep sea sedimentary sections has been limited by (1) practical length of piston cores to about 30 meters and (2) disturbance of sediment by rotary drilling with Glomar Challenger. The relatively high deposition rates of late Neogene sediments in the North Atlantic and in the Caribbean in particular has limited penetration, with conventional piston coring, to sediments not much older than late Pliocene in the Atlantic and not even through the late Pleistocene in the Caribbean. Rotary drilling has penetrated much older sediments in both areas, but the cores suffered extensive drilling disturbance that seriously degrades the Paleomagnetism of the material. Utilization of the hydraulic piston corer on the Challenger combines the advantage of a generally undisturbed recovery and great penetration to produce long, relatively undisturbed sections of late Neogene and Quaternary sediments suitable for paleomagnetic studies. In this chapter we present paleomagnetic data from Site 502. We tried to determine relative azimuthal orientation of successive cores (see Introduction for details). Because the low latitude of the site meant a small (inclination of about 22°) vertical component of magnetization, reversals of magnetization could easily be detected only in changes in the horizontal component, as 180° shifts in the declination direction of magnetization. Based on information from the core orienting device, a fiducial line was drawn the length of each core prior to cutting it into the standard 1.5 meter sections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin and development of the Phillipine Sea have been central issues in tectonic studies of a marginal sea: the deep-sea drilling project (DSDP), Leg 31, was primarily intended to resolve the question. Unfortunately, at only two of the Leg 31 sites (292 and 296) were microfossils indicating the age of the basement recovered, so the age of the ocean basin, had to be deduced by dating the drilled basement rocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fifteen lengths of Leg 59 cores (primarily from Hole 451 as well as from Holes 447A and 448A) exhibiting macroscopic faults were selected by Dr. R. B. Scott (Co-Chief Scientist, Leg 59) to help us initiate this petrofabric analysis. We proposed to (1) determine what dynamically useful deformation features might be associated with the faults, and (2) infer from these features as much as possible about the physical environment of the deformation (effective pressure, differential stress, temperature, and strain rate), the orientation and relatively magnitudes of the principal stresses at the time of deformation, and the degree of induration of the rocks at the time of deformation. The cores, mainly from Hole 451, had been slabbed on board ship with respect to the trace of bedding so that each cut surface contains the true bedding dip-direction. In general, the cores from Hole 451 are largely calcareous, lithic and vitric, brecciated tuffs, whereas those from Holes 447A and 448A are basalts or basalt breccias.