998 resultados para 1 std dev
Resumo:
A substantial strengthening of the South American monsoon system (SAMS) during Heinrich Stadials (HS) points toward decreased cross-equatorial heat transport as the main driver of monsoonal hydroclimate variability at millennial time-scales. In order to better constrain the exact timing and internal structure of HS1 over tropical South America we assessed two precisely dated speleothem records from central-eastern and northeastern Brazil in combination with two marine records of terrestrial organic and inorganic matter input into the western equatorial Atlantic. During HS1 we recognize at least two events of widespread intensification of the SAMS across the entire region influenced by the South Atlantic Convergence Zone (SACZ) at 16.11-14.69 kyr BP and 18.1-16.66 kyr BP (labeled as HS1a and HS1c, respectively), separated by a dry excursion from 16.66-16.11 kyr BP (HS1b). In view of the spatial structure of precipitation anomalies, the widespread increase of monsoon precipitation over the SACZ domain was termed 'Mega-SACZ'.
Resumo:
The biodiversity of pelagic deep-sea ecosystems has received growing scientific interest in the last decade, especially in the framework of international marine biodiversity initiatives, such as Census of Marine Life (CoML). While a growing number of deep-sea zooplankton species has been identified and genetically characterized, little information is available on the mechanisms minimizing inter-specific competition and thus allowing closely related species to co-occur in the deep-sea pelagic realm. Focussing on the two dominant calanoid copepod families Euchaetidae and Aetideidae in Fram Strait, Arctic Ocean, the present study strives to characterize ecological niches of co-occurring species, with regard to vertical distribution, dietary composition as derived from lipid biomarkers, and trophic level on the basis of stable isotope signatures. Closely related species were usually restricted to different depth layers, resulting in a multi-layered vertical distribution pattern. Thus, vertical partitioning was an important mechanism to avoid inter-specific competition. Species occurring in the same depth strata usually belonged to different genera. They differed in fatty acid composition and trophic level, indicating different food preferences. Herbivorous Calanus represent major prey items for many omnivorous and carnivorous species throughout the water column. The seasonal and ontogenetic vertical migration of Calanus acts as a short-cut in food supply for pelagic deep-sea ecosystems in the Arctic.
Resumo:
Radiocarbon datings are used to calculate mean sedimentation rates of metalliferous sediments in the southern arid zone of the Pacific Ocean adjoining the axis of the East Pacific rise (20°S). Owing to low sedimentation rates and intense mixing, only averaged figures could be obtained for ages less than 16 ky. Sedimentation rate varies from 0.3 to about 1 cm/1000 years in the surface layer and is several times higher in the time interval from 20 ky to 45 ky ago. Formulas for calculating mean sedimentation rates with allowance for benthic mixing are presented.
Resumo:
Ocean drilling has revealed that, although a minor mineral phase, native Cu ubiquitously occurs in the oceanic crust. Cu isotope systematics for native Cu from a set of occurrences from volcanic basement and sediment cover of the oceanic crust drilled at several sites in the Pacific, Atlantic and Indian oceans constrains the sources of Cu and processes that produced Cu**0. We propose that both hydrothermally-released Cu and seawater were the sources of Cu at these sites. Phase stability diagrams suggest that Cu**0 precipitation is favored only under strictly anoxic, but not sulfidic conditions at circum-neutral pH even at low temperature. In the basaltic basement, dissolution of primary igneous and potentially hydrothermal Cu-sulfides leads to Cu**0 precipitation along veins. The restricted Cu-isotope variations (delta 65Cu = 0.02-0.19 per mil) similar to host volcanic rocks suggest that Cu**0 precipitation occurred under conditions where Cu+-species were dominant, precluding Cu redox fractionation. In contrast, the Cu-isotope variations observed in the Cu**0 from sedimentary layers yield larger Cu-isotope fractionation (delta 65Cu = 0.41-0.95 per mil) suggesting that Cu**0 precipitation involved redox processes during the diagenesis, with potentially seawater as the primary Cu source. We interpret that native Cu precipitation in the basaltic basement is a result of low temperature (20°-65 °C) hydrothermal processes under anoxic, but not H2S-rich conditions. Consistent with positive delta 65Cu signatures, the sediment cover receives major Cu contribution from hydrogenous (i.e., seawater) sources, although hydrothermal contribution from plume fallout cannot be entirely discarded. In this case, disseminated hydrogenous and/or hydrothermal Cu might be diagenetically remobilized and reprecipitated as Cu**0 in reducing microenvironment.
Resumo:
Boron contents and boron, carbon and oxygen stable isotopes were determined for authigenic carbonates recovered from Ocean Drilling Program Leg 146, Oregon margin. Carbonate precipitates are the most widespread authigenic phase in the shallow accretionary wedge and carry chemical information about long-term variations in pore fluid origin and flow paths in the Cascadia subduction zone. Drilling the first ridge (toe area including the frontal thrust) and the second ridge (or Hydrate Ridge) of the prism demonstrated different fluid regimes, with higher B contents in the authigenic precipitates at the toe. The delta11B of 18 authigenic precipitates analysed ranges from 13.9 per mil to as high as 39.8 per mil, extending the upper range of previously reported carbonate delta11B values considerably. When related to the delta11B ratio of their parent solutions, these data are characteristic of fluid-related processes in accretionary prisms. Together with delta13C and delta18O, delta11B ratios of the carbonate concretions, nodules and crusts allow one to distinguish between precipitation influenced by (i) seawater, (ii) fluid reservoirs at different depth levels within the accretionary prism and (iii) cage water from dissociated gas hydrates, the latter possibly indicating a fluctuation of the bottom simulating reflector during most recent Earth's history. From this first systematic boron study on authigenic precipitates from an accretionary prism it is suggested that B contents of such carbonate crusts and concretions exceed those reported for other marine carbonates. Given the abundance of such precipitates at convergent margins, they represent a significant B sink in geochemical cycling. Isotopic compositions of the parent fluids to the carbonates mirror B chemistry of modern pore waters from convergent margins. The precipitates carry information of different subduction-related fluid processes over a certain period of time, and hence are a crucial tracer in the investigation of palaeo-fluid flow.
Resumo:
We investigate the long-term stability of El Niño-Southern Oscillation and Pacific Decadal Oscillation based on the examination of coccolithophore assemblages in a largely laminated 35 ka sedimentary record, retrieved in the Santa Barbara Basin (core MD02-2503). At a centennial scale coccolith assemblages indicate low primary production in the basin from 35 to 11.5 ka B.P., whereas the Holocene is characterized by high-productivity conditions. This pattern demonstrates the influence of the glacial-interglacial cycles on productivity and, by inference, on the nutrient supply by the upwelling cell off Point of Conception. On a shorter scale, laminations associated with Dansgaard-Oeschger events appear to be due to an injection of poorly oxygenated waters in the deepest part of the basin rather than anoxia due to high primary production. A seasonal sampling in seven laminated sections (spanning from 20 to 220 years) extracted from Holocene, Bølling-Allerød, and Dansgaard-Oeschger event 3 indicates El Niño probably existed continuously during the last 28 ka. The frequency of El Niño varied through time (between 1/2.5 and 1/5 event/a) and appearing to follow the precession cycle. El Niño exhibits higher (lower) frequencies when the precession values are lower (higher). Finally, the Holocene is characterized by a decrease in El Niño's frequencies due to the reinforcement of El Niño through this period.
Resumo:
A mesocosm experiment was conducted to investigate the impact of rising fCO2 on the build-up and decline of organic matter during coastal phytoplankton blooms. Five mesocosms (~38 m³ each) were deployed in the Baltic Sea during spring (2009) and enriched with CO2 to yield a gradient of 355-862 µatm. Mesocosms were nutrient fertilized initially to induce phytoplankton bloom development. Changes in particulate and dissolved organic matter concentrations, including dissolved high-molecular weight (>1 kDa) combined carbohydrates, dissolved free and combined amino acids as well as transparent exopolymer particles (TEP), were monitored over 21 days together with bacterial abundance, and hydrolytic extracellular enzyme activities. Overall, organic matter followed well-known bloom dynamics in all CO2 treatments alike. At high fCO2, higher dPOC:dPON during bloom rise, and higher TEP concentrations during bloom peak, suggested preferential accumulation of carbon-rich components. TEP concentration at bloom peak was significantly related to subsequent sedimentation of particulate organic matter. Bacterial abundance increased during the bloom and was highest at high fCO2. We conclude that increasing fCO2 supports production and exudation of carbon-rich components, enhancing particle aggregation and settling, but also providing substrate and attachment sites for bacteria. More labile organic carbon and higher bacterial abundance can increase rates of oxygen consumption and may intensify the already high risk of oxygen depletion in coastal seas in the future.
Resumo:
Major and trace element composition as well as Sm-Nd isotopes of whole-rock samples and clay fractions (<2 µm) of bentonite layers and U-Pb ages of detrital zircons from the Paleogene Basilika Formation (Svalbard) and Mount Lawson Formation (Ellesmere Island).
Resumo:
For paleoceanographic studies, it is important to understand the processes that influence the calcium (Ca) isotopic composition of foraminiferal calcite tests preserved in the sediment record. Seven species of planktonic foraminifera from coretop sediments collectively exhibited a Ca temperature dependent fractionation of 0.013 per mil per °C. This is in agreement with previously published estimates for most species of planktonic foraminifera as well as biogenic and inorganic calcite and aragonite. Four species of planktonic foraminifera collected from a sediment trap showed a considerable amount of scatter and no consistent temperature dependent fractionation. Analyzed size fractions of coretop samples show no significant relationship with d44/40Ca. However, preliminary results suggest that the symbiotic and spinose foraminifera G. sacculifer might exhibit a relationship between test size and d44/40Ca. A one-box model in which Ca isotopes are allowed to fractionate by Rayleigh distillation from a biomineralization reservoir (internal pool) was used to constrain the isotopic composition of the original biomineralization Ca reservoir, assuming around 85% of the Ca reservoir is precipitated and the fractionation factor during precipitation is 0.9985 + 0.00002(T ºC). To explain the foraminiferal Ca isotope data, this model indicates that the Ca isotopic composition of the biomineralization reservoir is offset from seawater (approximately -0.8per mil).
Resumo:
Gullfaks is one of the four major Norwegian oil and gas fields, located in the northeastern edge of the North Sea Plateau. Tommeliten lies in the greater Ekofisk area in the central North Sea. During the cruises HE 208 and AL 267 several seep locations of the North Sea were visited. At the Heincke seep at Gullfaks, sediments were sampled in May 2004 (HE 208) using a video-guided multiple corer system (MUC; Octopus, Kiel). The samples were recovered from an area densely covered with bacterial mats where gas ebullition was observed. The coarse sands limited MUC penetration depth to maximal 30 centimeters and the highly permeable sands did not allow for a high-resolution, vertical subsampling because of pore water loss. The gas flare mapping and videographic observation at Tommeliten indicated an area of gas emission with a few small patches of bacterial mats with diameters <50 cm from most of which a single stream of gas bubbles emerged. The patches were spaced apart by 10-100 m. Sampling of sediments covered by bacterial mats was only possible with 3 small push cores (3.8 cm diameter) mounted to ROV Cherokee. These cores were sampled in 3 cm intervals. Lipid biomarker extraction from 10 -17 g wet sediment was carried out as described in detail elsewhere (Elvert et al., 2003; doi:10.1080/01490450303894). Briefly, defined concentrations of cholestane, nonadecanol and nonadecanolic acid with known delta 13C-values were added to the sediments prior to extraction as internal standards for the hydrocarbon, alcohol and fatty acid fraction, respectively. Total lipid extracts were obtained from the sediment by ultrasonification with organic solvents of decreasing polarity. Esterified fatty acids (FAs) were cleaved from the glycerol head group by saponification with methanolic KOH solution. From this mixture, the neutral fraction was extracted with hexane. After subsequent acidification, FAs were extracted with hexane. For analysis, FAs were methylated using BF3 in methanol yielding fatty acid methyl esters (FAMES). The fixation for total cell counts and CARD-FISH were performed on-board directly after sampling. For both methods, sediments were fixed in formaldehyde solution. After two hours, aliquots for CARD-FISH staining were washed with 1* PBS (10mmol/l sodium phosphate solution, 130mmol/l NaCl, adjusted to a pH of 7.2) and finally stored in a 1:1 PBS:ethanol solution at -20°C until further processing. Samples for total cell counts were stored in formalin at 4°C until analysis. For sandy samples, the total cell count/CARD-FISH protocol was optimized to separate sand particles from the cells. Cells were dislodged from sediment grains and brought into solution with the supernatant by sonicating each sample onice for 2 minutes at 50W. This procedure was repeated four times and supernatants were combined. The sediment samples were brought to a final dilution of 1:2000 to 1:4000 and filtered onto 0.2µm GTTP filters (Millipore, Eschbonn, Germany).
Resumo:
These data form the basis of an analysis of a prevalent research bias in the field of ocean acidification, notably the ignoring of natural fluctuations and gradients in the experimental design. The data are extracted from published work and own experiments.
Resumo:
Sediment cores were recovered from the New Ireland Basin, east of Papua New Guinea, in order to investigate the late Quaternary eruptive history of the Tabar-Lihir-Tanga-Feni (TLTF) volcanic chain. Foraminifera d18O profiles were matched to the low-latitude oxygen isotope record to date the cores, which extend back to the early part of d18O Stage 9 (333 ka). Sedimentation rates decrease from >10 cm/1000 yr in cores near New Ireland to ~2 cm/1000 yr further offshore. The cores contain 36 discrete ash beds, mostly 1-8 cm thick and interpreted as either fallout or distal turbidite deposits. Most beds have compositionally homogeneous glass shard populations, indicating that they represent single volcanic events. Shards from all ash beds have the subduction-related pattern of strong enrichment in the large-ion lithophile elements relative to MORB, but three distinct compositional groups are apparent: Group A beds are shoshonitic and characterised by >1300 ppm Sr, high Ce/Yb and high Nb/Yb relative to MORB, Group B beds form a high-K series with MORB-like Nb/Yb but high Ce/Yb and well-developed negative Eu anomalies, whereas Group C beds are transitional between the low-K and medium-K series and characterised by flat chondrite-normalised REE patterns with low Nb/Yb relative to MORB. A comparison with published data from the TLTF chain, the New Britain volcanic arc and backarc including Rabaul, and Bagana on Bougainville demonstrates that only Group A beds share the distinctive phenocryst assemblage and shoshonitic geochemistry of the TLTF lavas. The crystal- and lithic-rich character of the Group A beds point to a nearby source, and their high Sr, Ce/Yb and Nb/Yb match those of Tanga and Feni lavas. A youthful stratocone on the eastern side of Babase Island in the Feni group is the most probable source. Group A beds younger than 20 ka are more fractionated than the older Group A beds, and record the progressive development of a shallow level magma chamber beneath the cone. In contrast, Group B beds represent glass-rich fallout from voluminous eruptions at Rabaul, whereas Group C beds represent distal glass-rich fallout from elsewhere along the volcanic front of the New Britain arc.
Resumo:
Cold-water corals are common along the Moroccan continental margin off Melilla in the Alboran Sea (western Mediterranean Sea), where they colonise and largely cover mound and ridge structures. Radiocarbon ages of the reef-forming coral species Lophelia pertusa and Madrepora oculata sampled from those structures, reveal that they were prolific in this area during the last glacial-interglacial transition with pronounced growth periods covering the Bølling-Allerød interstadial (13.5-12.8 ka BP) and the Early Holocene (11.3-9.8 ka BP). Their proliferation during these periods is expressed in vertical accumulation rates for an individual coral ridge of 266-419 cm ka**-1 that consists of coral fragments embedded in a hemipelagic sediment matrix. Following a period of coral absence, as noted in the records, cold-water corals re-colonised the area during the Mid-Holocene (5.4 ka BP) and underwater photographs indicate that corals currently thrive there. It appears that periods of sustained cold-water coral growth in the Melilla Coral Province were closely linked to phases of high marine productivity. The increased productivity was related to the deglacial formation of the most recent organic rich layer in the western Mediterranean Sea and to the development of modern circulation patterns in the Alboran Sea.