805 resultados para silicate rock analysis
Resumo:
This paper constitutes a first detailed and systematic facies and biota description of an isolated carbonate knoll (Pee Shoal) in the Timor Sea (Sahul Shelf, NW Australia). The steep and flat-topped knoll is characterized by a distinct facies zonation comprising (A) soft sediments with scattered debris and scarce sponges, hydrozoans and crinoids (320-210 m water depth), (B) hardground outcrops (step-like banks, vertical cliffs) that are mainly colonized by octocorals and sponges (210-75 m), and (C) the summit region (75-21 m) where the slopes merge gently into the flat-topped summit that is densely colonized by massive and encrusting zooxanthellate corals and the octocoral Heliopora coerulea. In contrast, the sediments recovered from the summit are dominated by the green alga Halimeda, subordinate components are corals, benthic foraminifers, mollusks, and coralline red algae. Thus, the sediments are classified as chlorozoan grain assemblage. However, non-skeletal grains (fecal pellets, ooids) are almost completely absent. This discrepancy between the living biota and the sediment composition could reflect a disruption by the severe tropical cyclone Ingrid that hit the northern Australian shelf in March 2005, just before the sampling for this study took place (September 2005).
Resumo:
NW African climate shows orbital and millenial-scale variations, which are tightly connected to changes in marine productivity. We present an organic-walled dinoflagellate cyst (dinocyst) record from a sediment core off Cape Yubi at about 27°N in the Canary Basin covering the time period from 47 to 3ka before present (BP). The dinocyst record reflects differences in upwelling intensity and seasonality as well as the influence of fluvial input. Sea-level changes play an important role for the upwelling pattern and productivity signals at the core site. Within the studied time interval, four main phases were distinguished. (1) From 45 to 24ka BP, when sea-level was mostly about 75m lower than today, high relative abundances of cysts of heterotrophic taxa point to enhanced upwelling activity, especially during Heinrich Events, while relatively low dinocyst accumulation rates indicate that filament activity at the core location was strongly reduced. (2) At sea-level lowstand during the LGM to H1, dinocyst accumulation rates suggest that local filament formation was even more inhibited. (3) From the early Holocene to about 8ka BP, extraordinary high accumulation rates of most dinocyst species, especially of Lingulodinium machaerophorum, suggest that nutrient supply via fluvial input increased and rising sea-level promoted filament formation. At the same time, the upwelling season prolongated. (4) A relative increase in cysts of photoautotrophic taxa from about 8ka BP on indicates more stratified conditions while fluvial input decreased. Our study shows that productivity records can be very sensitive to regional features. From the dinocyst data we infer that marine surface productivity off Cape Yubi during glacial times was within the scale of modern times but extremely enhanced during deglaciation.
Resumo:
In a gravity core from the eastern Mediterranean Sea, a chemically and mineralogically distinct, 5.5-cm-thick layer is present above sapropel S-1 and overlain by hemipelagic marls. Calcite is completely absent in this exotic layer, dolomite is present only in small amounts, and the Cr concentrations are significantly enhanced. The layer was deposited primarily under reducing conditions, but the distributions of redox-sensitive elements show that a large part of the exotic layer is now oxidised by a downward-progressing oxidation front. Sediments from within the nearby anoxic, hypersaline Urania Basin are similar to those from the exotic layer, in particular in S-, C-, and O-isotope distributions of pyrite and dolomite, as well as increased Cr concentrations. Mud expulsion due to expansion of gas-rich mud is proposed to explain the presence of the exotic layer outside the Urania Basin. The deposition of an anoxic layer above S-1 shielded the sapropel from oxidation which resulted in the rare occurrence of a complete preservation of S-1 and provides the first minimum age for the start of anoxic mud accumulation in the Urania Basin.
Resumo:
The distribution of pollen in marine sediments is used to record vegetation changes over the past 30,000 years on the adjacent continent. A transect of marine pollen sequences from the mouth of the river Congo (~5°S) to Walvis Bay and Lüderitz (~25°S) shows vegetation changes in Congo, Angola and Namibia from the last glacial period into the Holocene. The comparison of pollen records from different latitudes provides information about the latitudinal shift of open forest and savannahs (Poaceae pollen), the extension of lowland forest (rain forest pollen) and Afromontane forest (Podocarpus pollen), and the position of the desert fringe (pollen of Caryophyllaceae, Chenopodiaceae and Amaranthaceae). High Cyperaceae pollen percentages in sediments from the last glacial period off the mouth of the river Congo suggest the presence of open swamps rather than savannah vegetation in the Congo Basin. Pollen from Restionaceae in combination with Stoebe-type pollen (probably from Elytropappus) indicates a possible northwards extension of winter rain vegetation during the last glacial period. The record of Rhizophora (mangrove) pollen is linked to erosion of the continental shelf and sea-level rise. Pollen influx is highest off river mouths (10-2000 grains year**-1 cm**-2), close to the coast (300-6000 grains year**-1 cm**-2), but is an order of magnitude lower at sites situated far from the continent (<10 grains year**-1 cm**-2).
Resumo:
The grain size of deep-sea sediments provides an apparently simple proxy for current speed. However, grain size-based proxies may be ambiguous when the size distribution reflects a combination of processes, with current sorting only one of them. In particular, such sediment mixing hinders reconstruction of deep circulation changes associated with ice-rafting events in the glacial North Atlantic because variable ice-rafted detritus (IRD) input may falsely suggest current speed changes. Inverse modeling has been suggested as a way to overcome this problem. However, this approach requires high-precision size measurements that register small changes in the size distribution. Here we show that such data can be obtained using electrosensing and laser diffraction techniques, despite issues previously raised on the low precision of electrosensing methods and potential grain shape effects on laser diffraction. Down-core size patterns obtained from a sediment core from the North Atlantic are similar for both techniques, reinforcing the conclusion that both techniques yield comparable results. However, IRD input leads to a coarsening that spuriously suggests faster current speed. We show that this IRD influence can be accounted for using inverse modeling as long as wide size spectra are taken into account. This yields current speed variations that are in agreement with other proxies. Our experiments thus show that for current speed reconstruction, the choice of instrument is subordinate to a proper recognition of the various processes that determine the size distribution and that by using inverse modeling meaningful current speed reconstructions can be obtained from mixed sediments.
Resumo:
The presence and abundance of anaerobic ammonium-oxidizing (anammox) bacteria was investigated in continental shelf and slope sediments (300-3000 m water depth) off northwest Africa in a combined approach applying quantitative polymerase chain reaction (q-PCR) analysis of anammox-specific 16S rRNA genes and anammox-specific ladderane biomarker lipids. We used the presence of an intact ladderane monoether lipid with a phosphocholine (PC) headgroup as a direct indicator for living anammox bacteria and compared it with the abundance of ladderane core lipids derived from both living and dead bacterial biomass. All investigated sediments contained ladderane lipids, both intact and core lipids, in agreement with the presence of anammoxspecific 16S rRNA gene copies, indicating that anammox occurs at all sites. Concentrations of ladderane core lipids in core top sediments varied between 0.3 and 97 ng g**-1 sediment, with the highest concentrations detected at the sites located on the shelf at shallower water depths between 300 and 500 m. In contrast, the C20 [3]-ladderane monoether-PC lipid was most abundant in a core top sediment from 1500 m water depth. Both anammox-specific 16S rRNA gene copy numbers and the concentration of the C20 [3]-ladderane monoether-PC lipid increased downcore in sediments located at greater water depths, showing highest concentrations of 1.2 x 10**8 copies g**-1 sediment and 30 pg g**-1 sediment, respectively, at the deepest station of 3000 m water depth. This suggests that the relative abundance of anammox bacteria is higher in sediments at intermediate to deep water depths where carbon mineralization rates are lower but where anammox is probably more important than denitrification.
Resumo:
The primary geochemical data of the transect visited during the cruise Meteor M76/1. The stations include GeoB 12802, 12803, 12808, 12811, and 12815. The geochemical data include pore-water ferrous ion, sulfate, dissolved inorganic carbon, methane, and molecular hydrogen.
Resumo:
The Zambezi deep-sea fan, the largest of its kind along the east African continental margin, is poorly studied to date, despite its potential to record marine and terrestrial climate signals in the southwest Indian Ocean. Therefore, gravity core GeoB 9309-1, retrieved from 1219 m water depth, was investigated for various geophysical (magnetic susceptibility, porosity, colour reflectance) and geochemical (pore water and sediment geochemistry, Fe and P speciation) properties. Onboard and onshore data documented a sulphate/methane transition (SMT) zone at ~ 450-530 cm sediment depth, where the simultaneous consumption of pore water sulphate and methane liberates hydrogen sulphide and bi-carbonate into the pore space. This leads to characteristic changes in the sediment and pore water chemistry, as the reduction of primary Fe (oxyhydr)oxides, the precipitation of Fe sulphides, and the mobilization of Fe (oxyhydr)oxide-bound P. These chemical processes also lead to a marked decrease in magnetic susceptibility. Below the SMT, we find a reduction of porosity, possibly due to pore space cementation by authigenic minerals. Formation of the observed geochemical, magnetic and mineralogical patterns requires a fixation of the SMT at this distinct sediment depth for a considerable time-which we calculated to be ~ 10 000 years assuming steady-state conditions-following a period of rapid upward migration towards this interval. We postulate that the worldwide sea-level rise at the last glacial/interglacial transition (~ 10 000 years B.P.) most probably caused the fixation of the SMT at its present position, through drastically reduced sediment delivery to the deep-sea fan. In addition, we report an internal redistribution of P occurring around the SMT, closely linked to the (de)coupling of sedimentary Fe and P, and leaving a characteristic pattern in the solid P record. By phosphate re-adsorption onto Fe (oxyhydr)oxides above, and formation of authigenic P minerals (e.g. vivianite) below the SMT, deep-sea fan deposits may potentially act as long-term sinks for P.
Resumo:
The usually high concentrations of Zn, Pb, Cd, and Cu in the most recently accreted portions of ferromanganese nodules from the western Baltic Sea are thought to reflect increased metal input due to anthropogenic mobilization. If so, the point of increase represents a time horizon within the structure of the nodule. Similar trace metal distributions of radiometrically dated sediments from the same area suggest that the ferromanganese nodules have grown in thickness between 0.02 and 0.16 mm yr-1. From this growth rate anthropogenic Zn flux to the nodule surface was calculated to be 80 mg m-2 yr-1.
Resumo:
Pollen and spores from a deep-sea core located west of the Niger Delta record an uninterrupted area of lowland rain forest in West Africa from Guinea to Cameroon during the last Interglacial and the early Holocene. During other periods of the last 150 ka, a savanna corridor between the western - Guinean - and the eastern - Congolian - part of the African lowland rain forest existed. This so-called Dahomey Gap had its largest extension during Glacial Stages 6, 4, 3, and 2. Reduced surface salinity in the eastern Gulf of Guinea as recorded by dinoflagellate cysts indicates sufficient precipitation for extensive forest growth during Stages 5 and 1. The large modern extension of dry forest and savanna in West Africa cannot be solely explained by climatic factors. Mangrove expansion in and west of the Niger Delta was largest during the phases of sea-level rise of Stages 5 and 1. During Stages 6, 4, 3, and 2, shelf areas were exposed and the area of the mangrove swamps was minimal.
Resumo:
Over 100 samples of recent surface sediments from the bottomn of the Atlantic Ocean offshore NW Africa between 34° and 6° N have been analysed palynologically. The objective of this study was to reveal the relation between source areas, transport systems, and resulting distribution patterns of pollen and spores in marine sediments off NW Africa, in order to lay a sound foundation for the interpretation of pollen records of marine cores from this area. The clear zonation of the NW-African vegetation (due to the distinct climatic gradient) is helpful in determining main source areas, and the presence of some major wind belts facilitates the registration of the average course of wind trajectories. The present circulation pattern is driven by the intertropical front (ITCZ) which shifts over the continent between c. 22° N (summer position) and c. 4° N (winter position) in the course of the year. Determination of the period of main pollen release and the average atmospheric circulation pattern effective at that time of the years is of prime importance. The distribution patterns in recent marine sediments of pollen of a series of genera and families appear to record climatological/ecological variables, such as the trajectory of the NE trade, January trades, African Easterly Jet (Saharan Air Layer), the northernmost and southernmost position of the intertropical convergence zone, and the extent and latitudinal situation of the NW-African vegetation belt. Pollen analysis of a series of dated deep-sea cores taken between c. 35° and the equator off NW African enable the construction of paleo-distribution maps for time slices of the past, forming a register of paleoclimatological/paleoecological information.
Resumo:
During the late Pleistocene, sapropels (layers of organic-carbon rich sediment) formed throughout the entire Eastern Mediterranean Basin in close association with glacial/interglacial transitions. The current theory for the mechanism of sapropel formation involves a density stratification of the water column, due to the invasion of a large quantity of low-saline water, which resulted in oxygen depletion of the bottom waters. Most workers believe that this low-salinity water was glacial meltwater that entered the Mediterranean via the Black Sea and a series of interconnected glacial lakes, but the suggestion also has been made that the freshwater originated from the Nile River. In this study the oxygen isotope values of planktonic foraminifera,Globigerinoides ruber, have been examined in six gravity cores and one piston core from the southern Levantine Basin, and compared with the oxygen isotope records ofG. ruber from other areas of the Eastern Mediterranean. This study deals mainly with the latest sapropel which was deposited approximately 7000 to 9000 years ago. Results indicate that Nile discharge probably does reduce salinities somewhat in the immediate area surrounding the mouth of the Nile, but this water is rapidly mixed with the highly saline waters of the easternmost Mediterranean. Using a mixing equation and surface water salinity limitations, an approximate oxygen isotope balance of surface waters was calculated for the time of latest sapropel deposition. This calculation shows that neither Nile River discharge nor Black Sea input (nor both together) are large enough to account for the large-scale oxygen isotope depletion associated with latest sapropel deposition in the Eastern Mediterranean. This suggests that part of the isotopic change at Termination I is probably due to increased surface water salinities during the last glacial maximum. In addition, evidence from the timing of sapropel 1 deposition and the dissolved oxygen balance indicates that deposition of the latest sapropel is associated with increased surface water production of biogenic material, as much as three times higher than that of present day.