719 resultados para >4.75 phi


Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Sea of Okhotsk is a marginal sea of the Pacific Ocean, which is characterized by strong variations in the productivity and sediment supply due to sea ice transport and river input. Furthermore the variations in the hydrological cycle determine the formation of the SOIW (Sea of Okhotsk Intermediate Water) which plays an important role in the ventilation processes in the intermediate water of the N-Pacific. Isotope data measured on planktonic and benthic foraminifera, sedimentological and geochemical studies of sediment cores and surface samples from the Sea of Okhotsk are used to reconstruct the paleoceanography during the past 350.000 years. The dating and correlation of the sediments are based on oxygen isotope stratigraphy, absolute ages, magnetic susceptibility as well as a detailled tephrachronology of the entire basin. The sedimentation rates are characterized by temporal and spatial variations. The maximum sedimentation rate takes place at the continental slope off Sakhalin due to the input of the Amur River, the sea ice drift and the high productivity. The sedimentation rate in the eastern part of the Sea of Okhotsk is generelly high because of the influence of the nutrient-rich Kamchatka Current. In the central and northern parts of the Sea of Okhotsk, areas with low productivity and reduced terrestrial supply, the sedimentation rate is the lowest. The analyses of the surface sediment samples make it possible to characterize the (sub)- recent sediment supply and transportation processes. The bulk sediment measurements, isotope data and the accumulation rate of ice-rafted debris (IRD) show a dominant sea ice cover and a region with a high productivity as well as a high Amur River input in the western part of the sea. The eastern part of the Sea of Okhotsk, however, is marked by the predominance of warm and nutrient-rich water masses coming from the Kamchatka Current which restricts the sea ice cover. This is reflected in low content of ice-rafted debris and high productivity proxies as well as in isotope data. The deposits of the Sea of Okhotsk are characterized by terrestrial, biogenic and volcanogenic sediment input which varies temporally and spatially. Here, the sedimentation pattern is dominated by the terrestrial input. Bulk sediment measurements and sample analyses of the > 63 micron particle input make it possible to distinguish glacial and interglacial fluctuations. The sedimentation processes during glacial times are determined by a high content of ice-rafted debris, whereas the primary production is higher during interglacial periods. During the last glacial/interglacial cycle the IRD-distribution pattern indicates a strong sea ice transport in the western part and in large areas of the open sea in the eastern part of the Sea of Okhotsk with a relatively constant ice-drift system. The IRD flux in sediments of the oxygen isotope Stage 6 reflects a new sedimentation pattern in the eastern part of the sea. This high IRD accumulation rate indicates ice advances beyond the shelf margin and an iceberg transport from NE-E direction into the Sea of Okhotsk. The several large, brief, negative anomalies in d13C values of Neogloboquadrina pachyderma (s) show releases of methane from basin sediments which correspond to periods of relative sea level falls. The high sedimentation rates on the Sakhalin slope allow insights into the climatic history in Holocene and indicate shorter-scale variations oscillation in Stage 3, which correlate with the global climatic changes. These variations are described as Dansgaard-Oeschger cycles in Greenland ice cores and as Heinrich-Events in several marine sediment cores from the N-Atlantic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sediments of 14 box cores and 7 gravity cores, mainly taken directly in front of the Filchner(-Ronne) ice shelf northwest of Berkner Island (Weddell Sea), allowed to distinguish six sediment types. On the one hand,the retreat of the at first grounded and then floated ice from the last glacial maximum is documented. On the other hand,the sediments give an insight into extensive Holocene sediment deposition and remobilization northwest of Berkner Island. The ortho till was deposited directly by the grounded ice sheet and is lacking any marine influence. After floating of the ice shelf, partly very weIl stratified, partly unstratified, non-bioturbated paratill is deposited beneath the ice shelf. Lack of IRD-content in the paratill immediately above the orthotill indicates freezing at the bottom of the ice, at least for a short period after the ice became afloat. The orthotill and paratill contain small amounts of fragmented Tertiary diatoms, which allow the conclusion, that glacial-marine sediments in the accumulation area of the Ronne ice shelf will be eroded and later deposited by ice in the investigation area. Starting of bioturbation and therefore change in sedimentation from paratill to bioturbated paratill,is caused by the retreat of the ice shelf to its actual position. Isostatic uplift of the sea-bed after the Ice Age causes minor water depths with higher current velocities. The fine-fraction is eroding and mean particle-size will increase. Maybe, also isostatic uplift is responsible for repeated great advances of the floated ice shelf as shown in an erosional horizon in some cores containing bioturbated paratill. Postglacial sediment-thicknesses exceed 3 m. Assuming floating of the ice 15.000 YBP, accumulation rates reach nearly 20cm/lOOO years. Following the theories about sediment input in front of wide ice shelves, this was not expected. In the shallower water depths of Berkner Bank, the oscillations of the ice shelf are recorded in the sediments. Sorting and redistribution by high current velocities from beneath the ice up to the calving line, lead to the deposition of the weIl to very weIl sorted sandy till. In front of the calving line the finer fraction will settle down. Remobilization is possible by bioturbation and increasing current-velocity. According to the intensity of mixing of the sandy till with the fine fraction, modified till or muddy till results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The water masses in the Florida Straits and Bahamas region are important sources for the Northern Atlantic surface ocean circulation. In this study, we analyse carbonate preservation in surface sediments located above the chemical lysocline in the Florida Straits and Bahamas region and discuss possible reasons for supralysoclinal dissolution. Calcite dissolution proxies such as the variation of the foraminiferal assemblage, Fragmentation Index, Benthic Foraminifera Index, and Resistance Index displayed a good preservation in both areas. The pteropod species Limacina inflata showed very good preservation in sediments of inter-platform channels from the Great Bahama Bank (Providence Channel, Exuma Sound) above the aragonite lysocline. Supralysoclinal aragonite dissolution, however, was observed at two water depth levels (800-1000 m and below 1500 m) in the Florida Straits. Our observations suggest that the supralysoclinal dissolution in the Florida Straits is due to the degradation of organic material. The presence of Antarctic Intermediate Water (AAIW) may be a contributing factor for the significant aragonite dissolution in 800-1000 m. The comparison of modern preservation patterns of the surface sediments with hydrographical measurements shows that the L. inflata Dissolution Index (LDX) might be an adequate proxy to reconstruct paleo-water mass conditions in an area which is highly saturated with respect to calcium carbonate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lake Ohrid is likely of Pliocene age and thus commonly referred to as the oldest existing lake in Europe. In this study spatial variability of recent sediment composition is assessed using >50 basin wide distributed surface sediment samples. Analysis of biogeochemical bulk parameters, selected metals, pigment concentrations as well as grain size distributions revealed a significant spatial heterogeneity in surface sediment composition. It implies that sedimentation in Lake Ohrid is controlled by an interaction of multiple natural and anthropogenic factors and processes. Major factors controlling surface sediment composition are related to differences in geological catchment characteristics, anthropogenic land use, and a counterclockwise rotating surface water current. In some instances processes controlling sediment composition also seem to impact distribution patterns of biodiversity, which suggests a common interaction of processes responsible for both patterns.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Eolian dust is a significant source of iron and other nutrients that are essential for the health of marine ecosystems and potentially a controlling factor of the high nutrient-low chlorophyll status of the Subarctic North Pacific. We map the spatial distribution of dust input using three different geochemical tracers of eolian dust, 4He, 232Th and rare earth elements, in combination with grain size distribution data, from a set of core-top sediments covering the entire Subarctic North Pacific. Using the suite of geochemical proxies to fingerprint different lithogenic components, we deconvolve eolian dust input from other lithogenic inputs such as volcanic ash, ice-rafted debris, riverine and hemipelagic input. While the open ocean sites far away from the volcanic arcs are dominantly composed of pure eolian dust, lithogenic components other than eolian dust play a more crucial role along the arcs. In sites dominated by dust, eolian dust input appears to be characterized by a nearly uniform grain size mode at ~4 µm. Applying the 230Th-normalization technique, our proxies yield a consistent pattern of uniform dust fluxes of 1-2 g/m**2/yr across the Subarctic North Pacific. Elevated eolian dust fluxes of 2-4 g/m**2/yr characterize the westernmost region off Japan and the southern Kurile Islands south of 45° N and west of 165° E along the main pathway of the westerly winds. The core-top based dust flux reconstruction is consistent with recent estimates based on dissolved thorium isotope concentrations in seawater from the Subarctic North Pacific. The dust flux pattern compares well with state-of-the-art dust model predictions in the western and central Subarctic North Pacific, but we find that dust fluxes are higher than modeled fluxes by 0.5-1 g/m**2/yr in the northwest, northeast and eastern Subarctic North Pacific. Our results provide an important benchmark for biogeochemical models and a robust approach for downcore studies testing dust-induced iron fertilization of past changes in biological productivity in the Subarctic North Pacific.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated the occurrence and activity of anaerobic ammonia oxidation (anammox) bacteria in sandy and muddy sand sediments of the southern North Sea. The presence of anammox bacteria was established through the detection of specific phosphocholine-monoether ladderane lipids, 16S rRNA gene, and hydrazine synthase (hzsA) genes. Anammox activity was measured in intact sediment cores (in situ rate) and in sediment slurries (potential rate) as the rate of N2 evolution from 15N-labeled substrates and compared to the transcriptional activity of genes of anammox bacteria. The contribution of anammox to N2 production ranged between 0% and 29%. The potential rate of anammox agreed well with the abundance of anammox bacteria 16S rRNA and hzsA gene copies and the transcriptional activity of the anammox bacteria 16S rRNA gene. We found a higher abundance and activity of anammox bacteria in sediments with higher organic carbon content and also higher activity in summer than in winter. The abundance of anammox bacteria and their potential anammox rates were similar to those reported for other marine coastal sediments, suggesting that potentially they are important contributors to the nitrogen cycle in sandy sediments of shallow continental shelf areas.