790 resultados para Ocean acidification


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Charophytes are found in fresh and brackish waters across the globe and play key roles in coastal ecosystems. However, their response to increasing CO2 is not well understood. The aim of the study was to detect the effects of elevated CO2 on the physiology of charophyte species growing in the brackish Baltic Sea by measuring net primary production. Mesocosm experiments were conducted in the Kõiguste Bay (N Gulf of Riga) during the field season of 2012. Separate mesocosms were maintained at different pCO2 levels: 2000, 1000 and 200 µatm. The experiments were carried out with three species of charophytes: Chara aspera, C. tomentosa and C. horrida. The short-term photosynthetic responses of charophytes to different treatments were measured by the oxygen method. The results show that elevated CO2 levels in brackish water may enhance the photosynthetic activity of charophyte species and suggest that increasing CO2 in the Baltic Sea could have implications for interspecific competition and community structure in a future high CO2 world.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work examines the relationship between pH-induced changes in growth and stable isotopic composition of coccolith calcite in two coccolithophore species with a geological perspective. These cells (Gephyrocapsa oceanica and Coccolithus pelagicus) with differing physiologies and vital effects possess a growth optimum corresponding to average pH of surface seawater in the geological period during their first known occurrence. Diminished growth rates outside of their optimum pH range are explained by the challenge of proton translocation into the extracellular environment at low pH, and enhanced aqueous CO2 limitation at high pH. These diminished growth rates correspond to a lower degree of oxygen isotopic disequilibrium in G. oceanica. In contrast, the slower growing and ancient species C. pelagicus, which typically precipitates near-equilibrium calcite, does not show any modulation of oxygen isotope signals with changing pH. In CO2-utilizing unicellular algae, carbon and oxygen isotope compositions are best explained by the degree of utilization of the internal dissolved inorganic carbon (DIC) pool and the dynamics of isotopic re-equilibration inside the cell. Thus, the "carbonate ion effect" may not apply to coccolithophores. This difference with foraminifera can be traced to different modes of DIC incorporation into these two distinct biomineralizing organisms. From a geological perspective, these findings have implications for refining the use of oxygen isotopes to infer more reliable sea surface temperatures (SSTs) from fossil carbonates, and contribute to a better understanding of how climate-relevant parameters are recorded in the sedimentary archive.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of pH ranging from 8.0 to 6.8 (total scale - pHT) on fertilization, cleavage and larval development until pluteus stage was assessed in an intertidal temperate sea urchin. Gametes were obtained from adults collected in two contrasting tide pools, one showing a significant nocturnal pH decrease (lowest pHT = 7.4) and another where pH was more stable (lowest pHT = 7.8). The highest pHT at which significant effects on fertilization and cleavage were recorded was 7.6. On the contrary, larval development was only affected below pHT 7.4, a value equal or lower than that reported for several subtidal species. This suggests that sea urchins inhabiting stressful intertidal environments produce offspring that may better resist future ocean acidification. Moreover, at pHT 7.4, the fertilization rate of gametes whose progenitors came from the tide pool with higher pH decrease was significantly higher, indicating a possible acclimatization or adaptation of gametes to pH stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios. Because the ocean absorbs carbon dioxide from the atmosphere, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates, with potentially severe implications for marine ecosystems, including coral reefs. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallowwater habitats. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sinking of gelatinous zooplankton biomass is an important component of the biological pump removing carbon from the upper ocean. The export efficiency, e.g., how much biomass reaches the ocean interior sequestering carbon, is poorly known because of the absence of reliable sinking speed data. We measured sinking rates of gelatinous particulate organic matter (jelly-POM) from different species of scyphozoans, ctenophores, thaliaceans, and pteropods, both in the field and in the laboratory in vertical columns filled with seawater using high-quality video. Using these data, we determined taxon-specific jelly-POM export efficiencies using equations that integrate biomass decay rate, seawater temperature, and sinking speed. Two depth scenarios in several environments were considered, with jelly-POM sinking from 200 and 600 m in temperate, tropical, and polar regions. Jelly-POM sank on average between 850 and 1500 m/d (salps: 800-1200 m/d; ctenophores: 1200-1500 m/d; scyphozoans: 1000-1100 m d; pyrosomes: 1300 m/d). High latitudes represent a fast-sinking and low-remineralization corridor, regardless of species. In tropical and temperate regions, significant decomposition takes place above 1500 m unless jelly-POM sinks below the permanent thermocline. Sinking jelly-POM sequesters carbon to the deep ocean faster than anticipated, and should be incorporated into biogeochemical and modeling studies to provide more realistic quantification of export via the biological carbon pump worldwide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tissue distribution and ontogeny of Na+/K+-ATPase has been examined as an indicator for ion-regulatory epithelia in whole animal sections of embryos and hatchlings of two cephalopod species: the squid Loligo vulgaris and the cuttlefish Sepia officinalis. This is the first report of the immunohistochemical localization of cephalopod Na+/K+-ATPase with the polyclonal antibody alpha (H-300) raised against the human alpha1-subunit of Na+/K+-ATPase. Na+/K+-ATPase immunoreactivity was observed in several tissues (gills, pancreatic appendages, nerves), exclusively located in baso-lateral membranes lining blood sinuses. Furthermore, large single cells in the gill of adult L. vulgaris specimens closely resembled Na+/K+-ATPase-rich cells described in fish. Immunohistochemical observations indicated that the amount and distribution of Na+/K+-ATPase in late cuttlefish embryos was similar to that found in juvenile and adult stages. The ion-regulatory epithelia (e.g., gills, excretory organs) of the squid embryos and paralarvae exhibited less differentiation than adults. Na+/K+-ATPase activities for whole animals were higher in hatchlings of S. officinalis (157.0 ± 32.4 µmol/g FM/h) than in those of L. vulgaris (31.8 ± 3.3 µmol/g FM/h). S. officinalis gills and pancreatic appendages achieved activities of 94.8 ± 18.5 and 421.8 ± 102.3 µmol ATP/g FM/h, respectively. High concentrations of Na+/K+-ATPase in late cephalopod embryos might be important in coping with the challenging abiotic conditions (low pH, high pCO2) that these organisms encounter inside their eggs. Our results also suggest a higher sensitivity of squid vs. cuttlefish embryos to environmental acid-base disturbances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine calcareous sediments provide a fundamental basis for palaeoceanographic studies aiming to reconstruct past oceanic conditions and understand key biogeochemical element cycles. Calcifying unicellular phytoplankton (coccolithophores) are a major contributor to both carbon and calcium cycling by photosynthesis and the production of calcite (coccoliths) in the euphotic zone, and the subsequent long-term deposition and burial into marine sediments. Here we present data from controlled laboratory experiments on four coccolithophore species and elucidate the relation between the divalent cation (Sr, Mg and Ca) partitioning in coccoliths and cellular physiology (growth, calcification and photosynthesis). Coccolithophores were cultured under different seawater temperature and carbonate chemistry conditions. The partition coefficient of strontium (DSr) was positively correlated with both carbon dioxide (pCO2) and temperature but displayed no coherent relation to particulate organic and inorganic carbon production rates. Furthermore, DSr correlated positively with cellular growth rates when driven by temperature but no correlation was present when changes in growth rates were pCO2-induced. Our results demonstrate the complex interaction between environmental forcing and physiological control on the strontium partitioning in coccolithophore calcite and challenge interpretations of the coccolith Sr / Ca ratio from high-pCO2 environments (e.g. Palaeocene-Eocene thermal maximum). The partition coefficient of magnesium (DMg) displayed species-specific differences and elevated values under nutrient limitation. No conclusive correlation between coccolith DMg and temperature was observed but pCO2 induced a rising trend in coccolith DMg. Interestingly, the best correlation was found between coccolith DMg and chlorophyll a production, suggesting that chlorophyll a and calcite associated Mg originate from the same intracellular pool. These and previous findings indicate that Mg is transported into the cell and to the site of calcification via different pathways than Ca and Sr. Consequently, the coccolith Mg / Ca ratio should be decoupled from the seawater Mg / Ca ratio. This study gives an extended insight into the driving factors influencing the coccolith Mg / Ca ratio and should be considered for future palaeoproxy calibrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Incubation experiments with natural phytoplankton revealed a relationship between CO2 concentration and the production of transparent exopolymer particles (TEP), with TEP production being linearly related to theoretical CO2 uptake rates. The effect of different CO2 concentrations on TEP production was examined during incubation experiments with natural phytoplankton sampled at two different locations in the central Baltic Sea in summer 1999.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thecosome pteropods (pelagic mollusks) can play a key role in the food web of various marine ecosystems. They are a food source for zooplankton or higher predators such as fishes, whales and birds that is particularly important in high latitude areas. Since they harbor a highly soluble aragonitic shell, they could be very sensitive to ocean acidification driven by the increase of anthropogenic CO2 emissions. The effect of changes in the seawater chemistry was investigated on Limacina helicina, a key species of Arctic pelagic ecosystems. Individuals were kept in the laboratory under controlled pCO2 levels of 280, 380, 550, 760 and 1020 µatm and at control (0°C) and elevated (4°C) temperatures. The respiration rate was unaffected by pCO2 at control temperature, but significantly increased as a function of the pCO2 level at elevated temperature. pCO2 had no effect on the gut clearance rate at either temperature. Precipitation of CaCO3, measured as the incorporation of 45Ca, significantly declined as a function of pCO2 at both temperatures. The decrease in calcium carbonate precipitation was highly correlated to the aragonite saturation state. Even though this study demonstrates that pteropods are able to precipitate calcium carbonate at low aragonite saturation state, the results support the current concern for the future of Arctic pteropods, as the production of their shell appears to be very sensitive to decreased pH. A decline of pteropod populations would likely cause dramatic changes to various pelagic ecosystems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thecosome pteropods (pelagic mollusks) can play a key role in the food web of various marine ecosystems. They are a food source for zooplankton or higher predators such as fishes, whales and birds that is particularly important in high latitude areas. Since they harbor a highly soluble aragonitic shell, they could be very sensitive to ocean acidification driven by the increase of anthropogenic CO2 emissions. The effect of changes in the seawater chemistry was investigated on Limacina helicina, a key species of Arctic pelagic ecosystems. Individuals were kept in the laboratory under controlled pCO2 levels of 280, 380, 550, 760 and 1020 µatm and at control (0°C) and elevated (4°C) temperatures. The respiration rate was unaffected by pCO2 at control temperature, but significantly increased as a function of the pCO2 level at elevated temperature. pCO2 had no effect on the gut clearance rate at either temperature. Precipitation of CaCO3, measured as the incorporation of 45Ca, significantly declined as a function of pCO2 at both temperatures. The decrease in calcium carbonate precipitation was highly correlated to the aragonite saturation state. Even though this study demonstrates that pteropods are able to precipitate calcium carbonate at low aragonite saturation state, the results support the current concern for the future of Arctic pteropods, as the production of their shell appears to be very sensitive to decreased pH. A decline of pteropod populations would likely cause dramatic changes to various pelagic ecosystems.