724 resultados para Coiba Ridge
Resumo:
A quantitative model of development of magmatic and ore-magmatic systems under crests of mid-ocean ridges is constructed. Correct physical models of melting zone formation in approximation to active spreading, non-stationary dynamics of magma intrusion from a center of generation, filling of magma chambers of various shapes, feeding of fissure-type volcanoes, and retrograde boiling of melts during solidification of intrusive bodies beneath axial zones of spreading in crests of ridges are proposed. Physicochemical and mathematical theories of disintegration of multi-component solutions, growth of liquational drops of ore melts, and sublimation of components from magmatic gases are elaborated. Methods for constructing physically correct models of heat and mass transfer in heterophase media are devised. Modeling of development of magmatic and ore-magmatic systems on the basis of the Usov-Kuznetsov facies method and the Pospelov system approach are advanced. For quantitative models numerical circuits are developed and numerical experiments are carried out.
Resumo:
The monograph summarizes geological and metallogenic data on the Mid-Atlantic Ridge obtained during research expeditions of the Geological Institute RAS in 2000-2003. Formation of the earth crust in the region, structure of the rift zone, structure of the newly discovered Bogdanov Fracture Zone, neotectonic deformations, metallogenic peculiarities, prospecting criteria of ocean ore mineralization are under consideration.
Resumo:
Marine records from the Reykjanes Ridge indicate ice sheet variations and abrupt climate changes. One of these records, ice-rafted detritus (IRD), serves as a proxy for iceberg discharges that probably indicates ice sheet fluctuations. The IRD records suggest that iceberg discharge 68,000-10,000 yr B.P. happened more frequently than the 7000- to 10,000-yr spacing of the Heinrich events. An IRD peak 67,000 to 63,000 yr B.P. further suggests that the Middle Weichselian glaciation started about 12,000 yr earlier in the North Atlantic than in the Norwegian Sea. Several later IRD events, in contrast, correlate with Norwegian Sea IRD-rich layers and imply coeval ice sheet advances in the North Atlantic and the Norwegian Sea. Coccoliths in a core from the Reykjanes Ridge show distinct peaks in species that record occasional inflow of warm surface water during the last glaciation, as previously reported from the eastern Labrador Sea. High abundances of coccoliths, together with a decrease ofNeogloboquadrina pachydermasin. and relatively low delta18O values, imply enhanced advection of the North Atlantic Current 69,000-67,000 yr B.P., 56,000-54,000 yr B.P., 35,000-33,000 yr B.P., and 26,000-23,000 yr B.P. This advection provided a regional moisture source for extension of ice sheets onto the shelf. In contrast, most of the IRD events are characterized by cold polar surface water masses indicating rapid variations in ocean surface conditions.
Resumo:
The upper 200 m of the sediments recovered during IODP Leg 302, the Arctic Coring Expedition (ACEX), to the Lomonosov Ridge in the central Arctic Ocean consist almost exclusively of detrital material. The scarcity of biostratigraphic markers severely complicates the establishment of a reliable chronostratigraphic framework for these sediments, which contain the first continuous record of the Neogene environmental and climatic evolution of the Arctic region. Here we present profiles of cosmogenic 10Be together with the seawater-derived fraction of stable 9Be obtained from the ACEX cores. The down-core decrease of 10Be/9Be provides an average sedimentation rate of 14.5 ± 1 m/Ma for the uppermost 151 m of the ACEX record and allows the establishment of a chronostratigraphy for the past 12.3 Ma. The age-corrected 10Be concentrations and 10Be/9Be ratios suggest the existence of an essentially continuous sea ice cover over the past 12.3 Ma.
Resumo:
Psephitic particles in the region of the Iceland-Faeroe-Ridge have been transported and deposited by means of a complex interplay of glacier movements and drifting icebergs. The composition of the particle association is controlled by the sedimentation of basaltic rock particles derived from the ridge itself and, in addition to that and in southern parts of the ridge, from the Faeroe Islands, the Faeroe-Bank and the Bill Baileys-Bank. Besides, there are crystalline and sedimentary dropstones showing a very varied petrography and a wide range of particle sizes. Their percentage becomes greater as the distance from the ridge increases. The association of dropstones is relatively homogeneous in the region of the ridge and only at greater distances from the ridge it becomes more differentiated. Owing to their composition and distribution, as well as on the basis of characteristic fossils and rock types, the drop-stones are derived from Scandianvia and Great Britain. During periods of maximum glaciation, the Icland-Faeroe-Ridge, th eFaeroe-Bank and the Bill Baileys-Bank were under ice.
Resumo:
ODP Leg 204, which drilled at Hydrate Ridge, provides unique insights into the fluid regime of an accretionary complex and delineates specific sub-seafloor pathways for fluid transport. Compaction and dewatering due to smectite-illite transition increase with distance from the toe of the accretionary prism and bring up fluids from deep within the accretionary complex to sampled depths (<= 600 mbsf). These fluids have a distinctly non-radiogenic strontium isotope signature indicating reaction with the oceanic basement. Boron isotopes are also consistent with a deep fluid source that has been modified by desorption of heavy boron as clay minerals change from smectite to illite. One of three major horizons serves as conduit for the transport of mainly fluid. Our results enable us to evaluate fluid migration pathways that play important roles on massive gas hydrate accumulations and seepage of methane-rich fluids on southern Hydrate Ridge.
Resumo:
Carbon isotope and benthic foraminiferal data from Blake Outer Ridge, a sediment drift in the western North Atlantic (Ocean Drilling Program Sites 994 and 997, water depth ~ 2800 m), document variability in the relative volume of Southern Component (SCW) and Northern Component Waters (NCW) over the last 7 Ma. SCW was dominant before ~5.0 Ma, at ~3.6-2.4 Ma, and 1.2-0.8 Ma, whereas NCW dominated in the warm early Pliocene (5.0-3.6 Ma), and at 2.4-1.2 Ma. The relative volume of NCW and SCW fluctuated strongly over the last 0.8 Ma, with strong glacial-interglacial variability. The intensity of the Western Boundary Undercurrent was positively correlated to the relative volume of NCW. Values of Total Organic Carbon (TOC) were > 1.5% in sediments older than ~ 3.8 Ma, and not correlated to high primary productivity indicators, thus may reflect lateral transport of organic matter. TOC values decreased during the intensification of the Northern Hemisphere Glaciation (NHG, 3.8-1.8 Ma). Benthic foraminiferal assemblages underwent major changes when the sites were dominantly under SCW (3.6-2.4 and 1.2-0.8 Ma), coeval with the 'Last Global Extinction' of elongate, cylindrical deep-sea benthic foraminifera, which has been linked to cooling, increased ventilation and changes in the efficiency of the biological pump. These benthic foraminiferal turnovers were neither directly associated with changes in dominant bottom water mass nor with changes in productivity, but occurred during global cooling and increased ventilation of deep waters associated with the intensification of the NHG.
Resumo:
SIMS analyses have been carried out on clinopyroxenes, plagioclases and amphiboles of six gabbroic samples from Holes 921-924 of the Ocean Drilling Program Leg 153 sited in the MARK area of the Mid-Atlantic Ridge at the ridge-transform intersection, to investigate the rare earth, trace and volatile element distribution in the lower ocean crust during igneous crystallization and higher grade metamorphic conditions. The metagabbros underwent granulite to subgreenschist facies conditions through three main tectono-metamorphic phases: (1) ductile regime (750 < T < 1000 °C and P = 0.3 GPa); (2) transitional regime (600 < T < 700 °C and P = 0.2 GPa); (3) brittle regime (350 < T < 600 °C and P < 0.2 GPa). Igneous clinopyroxenes show Cl-chondrite normalized patterns depleted in LREE, and nearly flat for HREE. The rare earth and trace element distributions in igneous clinopyroxenes and plagioclases indicate that these minerals act as REE reservoirs, and comprise the main contribution to the overall rock content. The abundances in igneous minerals reflect the degree of fractionation of the parent liquids. In metamorphic clinopyroxenes recrystallized in anhydrous assemblages, the REE and trace elements patterns mimic those of the primary ones. Conversely, clinopyroxerie re-equilibrated in amphibolebearing assemblages shows a significant increase in REE, Ti, Zr, Y and V, a negative Eu anomaly, and slight decreases in Sr and Ba. An overall increase of REE and some trace elements is evident in hydrous assemblages, with preferential partitioning in the amphibole. It shows high Ti (18196-22844 ppm), LREE depleted patterns and LaN/SmN = 0.10-0.33, LaN/YbN = 0.10-0.30. Amphiboles from granoblastic assemblages show homogeneous patterns with no or a positive anomaly for TiN and negative anomalies for SrN and ZrN. Volatiles in amphibole are low, with Cl/F < 1; H2O% is significantly lower than the stoichiometric ratio (1.33-1.53%). The composition of the clinopyroxene and amphibole recrystallized in low-strain domains records evidence of incomplete re-equilibration, and element diffusion and partitioning is in part controlled by the textural site. The possible origins of the fluids involved in the metamorphic recrystallization are discussed: (1) remobilization from igneous amphibole; (2) exsolution from evolved melts; (3) introduction of seawater-derived fluids modified in rock-dominated systems; (4) injection of highly evolved hydrous melts during the metamorphic process.
Resumo:
The Logatchev hydrothermal vent field (14°45'N, Mid-Atlantic Ridge) is located in a ridge segment characterized by mantle-derived ultramafic outcrops. Compared to basalt-hosted vents, Logatchev high temperature fluids are relatively low in sulfide indicating that the diffuse, low temperature fluids of this vent field may not contain sufficient sulfide concentrations to support a chemosymbiotic invertebrate community. However, the high abundances of bathymodiolin mussels with bacterial symbionts related to free-living sulfur oxidizing bacteria suggested that bioavailable sulfide is present at Logatchev. To clarify if diffuse fluids above mussel beds of Bathymodiolus puteoserpentis provide the reductants and oxidants needed by their symbionts for aerobic sulfide oxidation, in situ microsensor measurements of dissolved hydrogen sulfide and oxygen were combined with simultaneous temperature measurements. High temporal fluctuations of all three parameters were measured above the mussel beds. H2S and O2 co-existed with mean concentrations between 9-31 µM (H2S) and 216-228 µM (O2). Temperature maxima (<= 7.4°C) were generally concurrent with H2S maxima (<= 156 µM) and O2 minima (>= 142 µM). Long-term measurements for 250 days using temperature as a proxy for oxygen and sulfide concentrations indicated that the mussels were neither oxygen- nor sulfide-limited. Our in situ measurements at Logatchev indicate that sulfide may also be bioavailable in diffuse fluids from other ultramafic-hosted vents along slow- and ultraslow-spreading ridges.
Resumo:
The effect of volcanic activity on submarine hydrothermal systems has been well documented along fast- and intermediate-spreading centers but not from slow-spreading ridges. Indeed, volcanic eruptions are expected to be rare on slow-spreading axes. Here we report the presence of hydrothermal venting associated with extremely fresh lava flows at an elevated, apparently magmatically robust segment center on the slow-spreading southern Mid-Atlantic Ridge near 5°S. Three high-temperature vent fields have been recognized so far over a strike length of less than 2 km with two fields venting phase-separated, vapor-type fluids. Exit temperatures at one of the fields reach up to 407°C, at conditions of the critical point of seawater, the highest temperatures ever recorded from the seafloor. Fluid and vent field characteristics show a large variability between the vent fields, a variation that is not expected within such a limited area. We conclude from mineralogical investigations of hydrothermal precipitates that vent-fluid compositions have evolved recently from relatively oxidizing to more reducing conditions, a shift that could also be related to renewed magmatic activity in the area. Current high exit temperatures, reducing conditions, low silica contents, and high hydrogen contents in the fluids of two vent sites are consistent with a shallow magmatic source, probably related to a young volcanic eruption event nearby, in which basaltic magma is actively crystallizing. This is the first reported evidence for direct magmatic-hydrothermal interaction on a slow-spreading mid-ocean ridge.