979 resultados para surface rock drilling rig
Resumo:
In the framework of a multidisciplinary research program, an organic geochemical study was carried out on a drill core which comprises a 245 m thick sequence of light-colored, Upper Albian marlstones that were deposited in the central part of the Lower Saxony basin (northern Germany). For part of the Upper Albian sequence, high-resolution measurements of carbonate contents reveal cycles which can be related to earth orbital forcing. Based on these data, sediment accumulation rates were calculated to be in the order of 15 g/m**2/yr. These high accumulation rates contrast with very low organic carbon contents and an extremely poor preservation of the autochthonous organic matter. Most of the sedimentary organic matter is of terrigenous origin and mainly derived from the erosion of older sedimentary rocks. Organic petrography reveals only a very small fraction of marine organic particles. Carbon/sulphur ratios, pristane/phytane ratios as well as the predominance of resedimented organic particles over autochthonous organic particles suggest that aerobic degradation processes rather than anaerobic processes (sulphate reduction) were responsible for the degradation of the organic matter. Furthermore, the scarcity of terrigenous organic particles (vitrinite) indicates that there was little vegetation on nearby land areas. To explain these analytical results, a depositional model was developed which could explain the scarcity of organic matter in the Upper Albian sediments. This model is based on downwelling of oxygen-rich, saline waters of Tethyan origin, which reduces the nutrient content of surface waters and thus primary bioproductivity while degradation of primary organic matter in the water column is enhanced at the same time. These conditions contrast to those which existed in Barremian and early Aptian times in this basin, when limited water exchange with adjacent oceans caused oxygen deficiency and the deposition of numerous organic carbon-rich black shales. The thick, organic matter-poor Upper Albian sequence of northern Germany also contrasts with comparatively thin, time-equivalent, deep-sea black shales from Italy. This discrepancy indicates that local and regional oceanographic factors (at least in this case) have a greater influence on organic matter deposition than global events.
Resumo:
Glassy Turonian foraminifera preserved in clay-rich sediments from the western tropical Atlantic yield the warmest equivalent d18O sea-surface temperatures (SSTs) yet reported for the entire Cretaceous-Cenozoic. We estimate Turonian SSTs that were at least as warm as (conservative mean ~30 °C) to significantly warmer (warm mean ~33 °C) than those in the region today. However, if independent evidence for high middle Cretaceous pCO2 is reliable and resulted in greater isotopic fractionation between seawater and calcite because of lower sea-surface pH, our conservative and warm SST estimates would be even higher (32 and 36°C, respectively). Our new tropical SSTs help reconcile geologic data with the predictions of general circulation models that incorporate high Cretaceous pCO2 and lend support to the hypothesis of a Cretaceous greenhouse. Our data also strengthen the case for a Turonian age for the Cretaceous thermal maximum and highlight a 20-40 m.y. mismatch between peak Cretaceous-Cenozoic global warmth and peak inferred tectonic CO2 production. We infer that this mismatch is either an artifact of a hidden Turonian pulse in global ocean-crust cycling or real evidence of the influence of some other factor on atmospheric CO2 and/or SSTs. A hidden pulse in crust cycling would explain the timing of peak Cretaceous-Cenozoic sea level (also Turonian), but other factors are needed to explain high-frequency (~10-100 k.y.) instability in middle Cretaceous SSTs reported elsewhere.
Resumo:
Here we present the first radiometric age data and a comprehensive geochemical data set (including major and trace element and Sr-Nd-Pb-Hf isotope ratios) for samples from the Hikurangi Plateau basement and seamounts on and adjacent to the plateau obtained during the R/V Sonne 168 cruise, in addition to age and geochemical data from DSDP Site 317 on the Manihiki Plateau. The 40Ar/39Ar age and geochemical data show that the Hikurangi basement lavas (118-96 Ma) have surprisingly similar major and trace element and isotopic characteristics to the Ontong Java Plateau lavas (ca. 120 and 90 Ma), primarily the Kwaimbaita-type composition, whereas the Manihiki DSDP Site 317 lavas (117 Ma) have similar compositions to the Singgalo lavas on the Ontong Java Plateau. Alkalic, incompatible-element-enriched seamount lavas (99-87 Ma and 67 Ma) on the Hikurangi Plateau and adjacent to it (Kiore Seamount), however, were derived from a distinct high time-integrated U/Pb (HIMU)-type mantle source. The seamount lavas are similar in composition to similar-aged alkalic volcanism on New Zealand, indicating a second wide-spread event from a distinct source beginning ca. 20 Ma after the plateau-forming event. Tholeiitic lavas from two Osbourn seamounts on the abyssal plain adjacent to the northeast Hikurangi Plateau margin have extremely depleted incompatible element compositions, but incompatible element characteristics similar to the Hikurangi and Ontong Java Plateau lavas and enriched isotopic compositions intermediate between normal mid-ocean-ridge basalt (N-MORB) and the plateau basement. These younger (~52 Ma) seamounts may have formed through remelting of mafic cumulate rocks associated with the plateau formation. The similarity in age and geochemistry of the Hikurangi, Ontong Java and Manihiki Plateaus suggest derivation from a common mantle source. We propose that the Greater Ontong Java Event, during which ?1% of the Earth's surface was covered with volcanism, resulted from a thermo-chemical superplume/dome that stalled at the transition zone, similar to but larger than the structure imaged presently beneath the South Pacific superswell. The later alkalic volcanism on the Hikurangi Plateau and the Zealandia micro-continent may have been part of a second large-scale volcanic event that may have also triggered the final breakup stage of Gondwana, which resulted in the separation of Zealandia fragments from West Antarctica.
Resumo:
High-resolution, fish tooth Nd isotopic records for eight Deep Sea Drilling Project and Ocean Drilling Program sites were used to reconstruct the nature of late Paleocene-early Eocene deep-water circulation. The goal of this reconstruction was to test the hypothesis that a change in thermohaline circulation patterns caused the abrupt 4-5°C warming of deep and bottom waters at the Paleocene/Eocene boundary - the Paleocene-Eocene thermal maximum (PETM) event. The combined set of records indicates a deep-water mass common to the North and South Atlantic, Southern and Indian oceans characterized by mean epsilon-Nd values of ~-8.7, and different water masses found in the central Pacific Ocean (epsilon-Nd ~-4.3) and Caribbean Sea (epsilon-Nd ~1.2). The geographic pattern of Nd isotopic values before and during the PETM suggests a Southern Ocean deep-water formation site for deep and bottom waters in the Atlantic and Indian ocean basins. The Nd data do not contain evidence for a change in the composition of deep waters prior to the onset of the PETM. This finding is consistent with the pattern of warming established by recently published stable isotope records, suggesting that deep- and bottom-water warming during the PETM was gradual and the consequence of surface-water warming in regions of downwelling.
Resumo:
A transfer function relating diatom assemblages in surface sediments and primary production in the photic zone was used to calculate variations in primary production in hole ODP Leg 112, Site 681A over the last 400 kyr. Primary production off central Peru was enhanced during peak glaciations and it decreased during peak interglacials, but low and high production periods also occurred in both glacials and interglacials. The close resemblance of the primary production curve off Peru to the atmospheric CO2 Vostok record suggests a relationship between the Peruvian neritic biological pump and atmospheric pCO2.
Resumo:
The Pliocene period is the most recent time when the Earth was globally significantly (~3°C) warmer than today. However, the existing pCO2 data for the Pliocene are sparse and there is little agreement between the various techniques used to reconstruct palaeo-pCO2. Moreover, the temporal resolution of the published records does not allow a robust assessment of the role of declining pCO2 in the intensification of the Northern Hemisphere Glaciation (INHG) and a direct comparison to other proxy records are lacking. For the first time, we use a combination of foraminiferal (delta11B) and organic biomarker (alkenone-derived carbon isotopes) proxies to determine the concentration of atmospheric CO2 over the past 5 Ma. Both proxy records show that during the warm Pliocene pCO2 was between 330 and 400 ppm, i.e. similar to today. The decrease to values similar to pre-industrial times (275-285 ppm) occurred between 3.2 Ma and 2.8 Ma - coincident with the INHG and affirming the link between global climate, the cryosphere and pCO2.
Resumo:
Oxygen and carbon isotope ratios in Eocene and Oligocene planktonic and benthic foraminifera have been investigated from Atlantic, Indian, and Pacific Ocean locations. The major changes in Eocene-Oligocene benthic foraminiferal oxygen isotopes were enrichment of up to 1 per mil in 18O associated with the middle/late Eocene boundary and the Eocene/Oligocene boundary at locations which range from 1- to 4-km paleodepth. Although the synchronous Eocene-Oligocene 18O enrichment began in the latest Eocene, most of the change occurred in the earliest Oligocene. The earliest Oligocene enrichment in 18O is always larger in benthic foraminifera than in surface-dwelling planktonic foraminifera, a condition that indicates a combination of deep-water cooling and increased ice volume. Planktonic foraminiferal d18O does not increase across the middle/late Eocene boundary at our one site with the most complete record (Deep Sea Drilling Project Site 363, Walvis Ridge). This pattern suggests that benthic foraminiferal d18O increased 40 m.y. ago because of increased density of deep waters, probably as a result of cooling, although glaciation cannot be ruled out without more data. Stable isotope data are averaged for late Eocene and earliest Oligocene time intervals to evaluate paleoceanographic change. Average d18O of benthic foraminifera increased by 0.64 per mil from the late Eocene to the early Oligocene d18O maximum, whereas the average increase for planktonic foraminifera was 0.52 per mil. This similarity suggests that the Eocene/Oligocene boundary d18O increase was caused primarily by increased continental glaciation, coupled with deep sea cooling by as much as 2°C at some sites. Average d18O of surface-dwelling planktonic foraminifera from 14 upper Eocene and 17 lower Oligocene locations, when plotted versus paleo-latitude, reveals no change in the latitudinal d18O gradient. The Oligocene data are offset by ~0.45 per mil, also believed to reflect increased continental glaciation. At present, there are too few deep sea sequences from high latitude locations to resolve an increase in the oceanic temperature gradient from Eocene to Oligocene time using oxygen isotopes.