1000 resultados para Counting, foraminifera
Resumo:
The first thorough analysis of microfossils from ore-bearing sediments of the Ashadze-1 Hydrothermal Field in the Mid-Atlantic Ridge sampled during Cruise 26 of R/V Professor Logachev in 2005 revealed substantial influence of hydrothermal processes on preservation of planktonic calcareous organisms as well as on preservation and composition of benthic foraminifera. From lateral and vertical distribution patterns and secondary alterations of microfossils it is inferred that the main phase of hydrothermal mineralization occurred in Holocene. Heavy metals (Cu, Co, Cr, and Ag) were accumulated by foraminiferal tests and in their enveloping Fe-Mn crusts. Distribution of authigenic minerals replacing foraminiferal tests demonstrates local zoning related to hydrothermal activity. There are three mineral-geochemical zones defined: sulfide zone, zone with elevated Mg content, and zone of Fe-Mn crusts.
Resumo:
Benthic foraminiferal assemblage compositions and sedimentary geochemical parameters were analyzed in two radiocarbon dated sediment cores from the upwelling area off NW Africa at 12°N, to reconstruct productivity changes during the last 31 kyr. High-latitude cold events and variations in low-latitude summer insolation influenced humidity, wind systems, and the position of the tropical rain belt over this time period. This in turn caused changes in intensity and seasonality of primary productivity off the southern Northwest African continental margin. High accumulation rates of benthic foraminifera, carbonate, and organic carbon during times of north Atlantic melt water events Heinrich 2 (25.4 to 24.3 kyr BP) and 1 (16.8 to 15.8 kyr BP) indicate high productivity. Dominance of infaunal benthic foraminiferal species and high numbers of deep infaunal specimens during that time indicate a strong and sustained supply of refractory organic matter reworked from the upper slope and shelf. A more southerly position of the tropical rainbelt and the Northeast trade wind belt during Heinrich 2 and 1 may have enhanced wind intensity and almost permanent upwelling, driving this scenario. A phytodetritus-related benthic fauna indicates seasonally pulsed input of labile organic matter but generally low year-round productivity during the Last Glacial Maximum (23 to 18 kyr BP). The tropical rainbelt is more expanded to the North than during Heinrich Events, and relatively weak NE trade winds resulted in seasonal and weak upwelling, thus lower productivity. High productivity characterized by a seasonally high input of labile organic matter, is indicated for times of orbital forced warming, such as the African Humid Period (9.8 to 7 kyr BP). An intensified African monsoon during boreal summer and the northernmost position of the tropical rainbelt within the last 31 kyr resulted in enhanced river discharge from the northward-extended drainage area (or river basin) initiating intense phytoplankton blooms. In the late Holocene (4 to 0 kyr BP) strong carbonate dissolution may have been caused by even more enhanced organic matter fluxes to the sea floor. Increasing aridity on the continent and stronger NE trade winds induced intensive, seasonal coastal upwelling.
Average living depth of principal benthic foraminiferal single species in surface sediment (Table 7)
Resumo:
Late Campanian and Maastrichtian benthic foraminifers are recorded from 12 samples from Ocean Drilling Program (ODP) Leg 183, Cores 183-1138A-52R through 63R (487.3-602.4 meters below seafloor), Kerguelen Plateau, Indian Ocean, and Danian benthics from one sample in the same section. The entire late Maastrichtian foraminifer fauna is noted from a dredge sample 220 km to the north. The structure of the fauna is compared with the Cenomanian-Turonian of the nearby Eltanin core E54-7. Faunas are reviewed in terms of planktonic percentage, composition, epifaunal/infaunal ratios, and dominance/diversity indices. The region was in the cool Austral Faunal Province through the Campanian-Maastrichtian and was probably warmer in the Cenomanian-Turonian. The ODP section is now 1600 meters below sea level and has subsided several hundred meters since deposition. Its fauna is dominated by epifaunal species suggesting little influence of upwelling. The dredge location has subsided little. Its fauna has a high infaunal content consistent with significant influence of upwelling near the plateau edge. The dominant benthic species remain constant through the ODP Cretaceous section, but subdominance changes, and the section is divided into three informal zones based on dominance/subdominance characteristics of the benthic fauna. Brief taxonomic comments are made on several species and some are figured.
Resumo:
Culture experiments with living planktic foraminifers reveal that the ratio of boron to calcium (B/Ca) in Orbulina universa increases from 56 to 92 µmol mol-1 when pH is raised from 7.61 +/- 0.02 to 8.67 +/- 0.03 (total scale). Across this pH range, the abundances of carbonate, bicarbonate, and borate ions also change (+ 530, - 500, and + 170 µmol kg-1, respectively). Thus specific carbonate system control(s) on B/Ca remain unclear, complicating interpretation of paleorecords. B/Ca in cultured O. universa also increases with salinity (55-72 µmol mol-1 from 29.9-35.4 per mil) and seawater boron concentration (62-899 µmol mol-1 from 4-40 ppm B), suggesting that these parameters may need to be taken into account for paleorecords spanning large salinity changes (~ 2 per mil) and for samples grown in seawater whose boron concentration ([B]SW) differs from modern by more than 0.25 ppm. While our results are consistent with the predominant incorporation of the charged borate species B(OH)4 into foraminiferal calcite, the behavior of the partition coefficient KD (defined as [B/Ca]calcite/B(OH)4/HCO3seawater) cannot be explained by borate incorporation alone, and suggests the involvement of other pH-sensitive ions such as CO3 For a given increase in seawater B(OH)4, the corresponding increase in B/Ca is stronger when B(OH)4 is raised by increasing [B]SW than when it is raised by increasing pH. These results suggest that B incorporation controls should be reconsidered. Additional insight is gained from laser-ablation ICP-MS profiles, which reveal variable B/Ca distributions within individual shells.
Resumo:
Composition and abundance of modern benthic foraminifers in the littoral zone of the Kunashir Island (South Kuriles) were studied. This littoral zone was examined on the sides of the Sea of Okhotsk, the Pacific Ocean, and the Izmena Bay. In the littoral zone of the Izmena Bay benthic foraminifers were not found. The highest biodiversity and maximal density of foraminifers were observed at a bench among rocks and blocks, in depressions of various size and depth (baths), at places where algae and water plants were attached, on silty sands, and on sands with admixture of broken shells, silt, and clastic matter composing the coast. The lowest density and biodiversity were found in mouths of creeks and rivers, on rock plates free from sediments and attached algae and water plants, as well as in places not protected from wind and wave activity. It was established that on both sides of the Sea of Okhotsk and of the Pacific Ocean foraminiferal complexes vary both in biodiversity and in density of their distribution in the littoral zone.
Resumo:
Planktic foraminiferal assemblages vary in response to seasonal fluctuations of hydrographic properties, between water masses, and after periodical changes and episodic events (e.g. reproduction, storms). Distinct annual variability of the planktic foraminiferal flux is also known from sediment trap data. In this paper we discuss the short-term impacts on interannual flux rates based on data from opening-closing net hauls obtained between the ocean surface and 500 m water depth. Data were recorded during April, May, June, and August at around 47°N, 20°W (BIOTRANS) in 1988, 1989, 1990, 1992, 1993, and during May 1989 and 1992 at 57°N, 20-22°W. Species assemblages closely resemble each other when comparing the mixed layer fauna with the fauna of the upper 100 m and the upper 500 m of the water column. In addition, species assemblages >100 µm are almost indistinguishable from assemblages that are >125 µm in test size. The standing stock of planktic foraminifers at BIOTRANS can vary by more than one order of magnitude over different years; however, species assemblages may be similar when comparing corresponding seasons. Early summer assemblages (June) are distinctly different from late summer assemblages (August). Significant variations in the species composition during spring (April/May) are independent of the mixed layer depth. Spring assemblages are characterized by high numbers of Globigerinita glutinata. In particular, day-to-day variations of the number of specimens and in species composition may have the same order of magnitude as interannual variations. This appears to be independent of the reproduction cycle. Species assemblages at 47°N and 57°N are similar during spring, although surface water temperatures and salinities differ by up to 10°C and 0.7 (PSU). We suggest that the main factors controlling the planktic foraminiferal fauna are the trophic properties in the upper ocean productive layer. Planktic foraminiferal carbonate flux as calculated from assemblages reveals large seasonal variations, a quasi-annual periodicity in flux levels, and substantial differences in timing and magnitude of peak fluxes. At the BIOTRANS station, the average annual planktic foraminiferal CaCO3 fluxes at 100 and 500 m depth are estimated to be 22.4 and 10.0 g/m**2/yr, respectively.
Resumo:
Quantitative study of benthic foraminifers from the upper Miocene to lower Pliocene section at Site 612 (1404 m present water depth) and the Pliocene section at Site 613 (2323 m present water depth) shows no evidence of widespread downslope transport of shallow-water biofacies or reworking of older material in the greater than 150 µm size fraction. In contrast, upper Miocene sediments from Site 604 (2364 m present water depth) show extensive reworking and downslope transport. At Site 612, benthic foraminifers show a succession from an upper Miocene Bolivina alata-Nonionella sp. biofacies, to an uppermost Miocene Bulimina alazanensis biofacies, to a lower Pliocene Cassidulina reflexa biofacies, to an upper Pliocene Melonis barleeanum-Islandiella laevigata biofacies. Evidence suggests that the Pliocene biofacies are in situ, although they could have been transported downslope from the upper-middle bathyal zone. At Site 613, Uvigerina peregrina dominated the "middle" Pliocene, while Globocassidulina subglobosa was dominant in the early and late Pliocene. High abundances of U. peregrina at Site 613 are associated with high values of sedimentary organic carbon.
Resumo:
Results of studies in two biogeochemically active zones of the Atlantic Ocean (the Benguela upwelling waters and the region influenced by the Congo River run-off) are reported in the book. A multidisciplinary approach included studies of the major elements of the ocean ecosystem: sea water, plankton, suspended matter, bottom sediments, interstitial waters, aerosols, as well as a wide complex of oceanographic studies carried out under a common program. Such an approach, as well as a use of new methodical solutions led to obtaining principally new information on different aspects of oceanology.
Resumo:
On the basis of planktonic foraminifera study, thickness of Holocene sediments has been ascertained in 60 sediment cores from various regions of the Atlantic Ocean. Ratios of species reflect warming of the upper water layer at the Pleistocene-Holocene boundary over the entire ocean. The Holocene boundary can be determined not only from microfaunal data, but also from lithologic ones including textural and structural features. Increase in CaCO3 contents in Holocene sediments as compared to Pleistocene is from 5-7% to 60-70% in different parts of the ocean.