929 resultados para Calculated from d11B
Resumo:
Grain-size records of the terrigenous and calcareous silt fraction, preservation of planktic foraminifera, and benthic foraminiferal stable-isotope data (delta13C, delta18O values of C. wuellerstorfi) at ODP Site 927 on the Ceará Rise (5°27.7'N, 44°28.8'W), are used to reconstruct variations in the history of bottom current strength, ventilation, and carbonate corrosiveness of deep waters during the time interval from 0.8 to 0.3 Ma. Glacial periods are characterized by generally smaller mean sizes of the terrigenous sortable silt fraction (mean(SS)), lower delta13C values, and poorer preservation of planktic foraminifera compared to interglacials. This indicates lower bottom current speeds, larger nutrient contents and more corrosive deep water. By contrast, larger mean(SS) sizes, higher delta13C values, and well preserved planktic foraminifera indicate strong circulation and a well ventilated deep-water mass during interglacials. The observed changes are most likely related to the weakening and strengthening of circulation of Lower North Atlantic Deep Water (LNADW). Cross-spectral analysis between the mean(SS) and benthic delta18O records reveals that minima in mean(SS) occur about 7.6 k.y. after the maximum in ice volume. This indicates a considerable lag time between ice-shield induced changes in LNADW production and subsequent changes in the velocity of LNADW flow in the western equatorial Atlantic. Striking changes in bottom current speed occur regularly during glacial to interglacial transitions. Extremely fine mean(SS) minima point to an almost complete shutdown of bottom current vigor in response to a cessation of LNADW production caused by an enhanced melt water release during the initial phases of deglaciation. However, each of the fine minima extremes is followed by a rapid shift to very high mean(SS) values that indicate strong bottom currents, and hence, vigorous LNADW flow during the early interglacials. After the onset of glacial Stage 12, generally poorer carbonate preservation and higher variability is registered. This coincides with a global decrease in carbonate preservation during the mid-Brunhes (mid-Brunhes dissolution event). Detailed grain-size analysis of the calcareous fine fraction (<63 µm) revealed a considerable reduction of particles in the fraction from 7 to 63 µm during periods of enhanced dissolution. This indicates a preferential dissolution of larger planktic foraminiferal fragments which leads to an enrichment of coccoliths in the calcareous fine fraction.
Resumo:
Massive sulfide samples from the Bent Hill area were analyzed for 230Th/234U and 231Pa/235U disequilibria. Apparent ages calculated from these ratios are between 8.2 and >300 ka. Concordant ages were found for only three samples that originate near the surface from the clastic sulfide zone and suggest "true" ages of between 8.5 and 16.0 ka (mean of 230Th and 231Pa ages). The uranium vs. depth distribution in the Bent Hill Massive Sulfide deposit suggests an open system for uranium for the deeper part of the deposit, which was probably caused by extensive recrystallization processes inhibiting true age determinations.
Resumo:
The monograph presents results of comprehensive geological and geophysical studies carried out in 1973 and 1976 during Cruises 54 and 58 of R/V "Vityaz" in the Eastern Indian Ocean. On the base of obtained data a description of topography, magnetic and gravity fields, structure of the sedimentary series and deep crustal structure of the East Indian Ridge, Central, West Australian and Cocos Basins, the Sunda Trench has been done. Materials on petrography, petrochemistry and geochemistry of igneous rocks in the region have been summarized. New geological and geophysical information has been compared with with DSDP materials. Tectonics and geological history of the Eastern Indian Ocean are under consideration.
Resumo:
To investigate the geochemistry of trace elements in coals from the Dingji Mine of the Huainan Coalfield, Anhui province, China, 416 borehole samples of coal, one parting, two floor and two roof mudstones were collected from 9 minable coal seams in 24 boreholes drilled during exploration. The abundances of 47 elements in each sample were determined by various instruments. The boron concentration in the coals suggests that marine influence decreased from coal seam 1 to 13-1. The geometric means of the elements Sn, Bi, Sb, and B are higher than the average for the corresponding elements in the coals from China, the U.S., and world. The enrichment of certain elements in the Shanxi or Upper Shihezi Formations is related to their depositional environment. The roof, floor and parting samples have higher contents of some elements than coal seams. The mineral matters in the coals from the Dingji Mine were found to consist mainly of granular quartz, clay minerals, and carbonate minerals. The elements are classified into two groups based on their stratigraphic distribution from coal seam 1 to 13-1, and the characteristics of each group are discussed. Based on the correlation coefficients of elemental concentrations with ash yield, four groups of elements with different affinities were identified.
Resumo:
In this paper authors present and discuss data on distribution and mineral composition of suspended particulate matter (SPM) in the Franz Victoria Trough, collected during Cruise 14 of scientific icebreaker Akademik Fedorov in the northern Barents Sea in October 1998. Higher total SPM concentrations (0.4-1.8 mg/l) were measured in the near-bottom layer of the Franz Victoria Strait and central part of the trough. Potential source of mineral particles in SPM is fine fractions of Barents Sea bottom sediments. They form the nepheloid layer, which spreads on the continental slope along the trough together with Barents Sea waters at 350-400 m depth.
Resumo:
Ocean drilling has revealed that, although a minor mineral phase, native Cu ubiquitously occurs in the oceanic crust. Cu isotope systematics for native Cu from a set of occurrences from volcanic basement and sediment cover of the oceanic crust drilled at several sites in the Pacific, Atlantic and Indian oceans constrains the sources of Cu and processes that produced Cu**0. We propose that both hydrothermally-released Cu and seawater were the sources of Cu at these sites. Phase stability diagrams suggest that Cu**0 precipitation is favored only under strictly anoxic, but not sulfidic conditions at circum-neutral pH even at low temperature. In the basaltic basement, dissolution of primary igneous and potentially hydrothermal Cu-sulfides leads to Cu**0 precipitation along veins. The restricted Cu-isotope variations (delta 65Cu = 0.02-0.19 per mil) similar to host volcanic rocks suggest that Cu**0 precipitation occurred under conditions where Cu+-species were dominant, precluding Cu redox fractionation. In contrast, the Cu-isotope variations observed in the Cu**0 from sedimentary layers yield larger Cu-isotope fractionation (delta 65Cu = 0.41-0.95 per mil) suggesting that Cu**0 precipitation involved redox processes during the diagenesis, with potentially seawater as the primary Cu source. We interpret that native Cu precipitation in the basaltic basement is a result of low temperature (20°-65 °C) hydrothermal processes under anoxic, but not H2S-rich conditions. Consistent with positive delta 65Cu signatures, the sediment cover receives major Cu contribution from hydrogenous (i.e., seawater) sources, although hydrothermal contribution from plume fallout cannot be entirely discarded. In this case, disseminated hydrogenous and/or hydrothermal Cu might be diagenetically remobilized and reprecipitated as Cu**0 in reducing microenvironment.
Resumo:
A quality-controlled snow and meteorological dataset spanning the period 1 August 1993-31 July 2011 is presented, originating from the experimental station Col de Porte (1325 m altitude, Chartreuse range, France). Emphasis is placed on meteorological data relevant to the observation and modelling of the seasonal snowpack. In-situ driving data, at the hourly resolution, consist of measurements of air temperature, relative humidity, windspeed, incoming short-wave and long-wave radiation, precipitation rate partitioned between snow- and rainfall, with a focus on the snow-dominated season. Meteorological data for the three summer months (generally from 10 June to 20 September), when the continuity of the field record is not warranted, are taken from a local meteorological reanalysis (SAFRAN), in order to provide a continuous and consistent gap-free record. Data relevant to snowpack properties are provided at the daily (snow depth, snow water equivalent, runoff and albedo) and hourly (snow depth, albedo, runoff, surface temperature, soil temperature) time resolution. Internal snowpack information is provided from weekly manual snowpit observations (mostly consisting in penetration resistance, snow type, snow temperature and density profiles) and from a hourly record of temperature and height of vertically free ''settling'' disks. This dataset has been partially used in the past to assist in developing snowpack models and is presented here comprehensively for the purpose of multi-year model performance assessment. The data is placed on the PANGAEA repository (doi:10.1594/PANGAEA.774249) as well as on the public ftp server ftp://ftp-cnrm.meteo.fr/pub-cencdp/.