651 resultados para Beella digitata flux


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Indian winter monsoon (IWM) is a key component of the seasonally changing monsoon system that affects the densely populated regions of South Asia. Cold winds originating in high northern latitudes provide a link of continental-scale Northern Hemisphere climate to the tropics. Western Disturbances (WD) associated with the IWM play a critical role for the climate and hydrology in northern India and the western Himalaya region. It is vital to understand the mechanisms and teleconnections that influence IWM variability to better predict changes in future climate. Here we present a study of regionally calibrated winter (January) temperatures and according IWM intensities, based on a planktic foraminiferal record with biennial (2.55 years) resolution. Over the last ~250 years, IWM intensities gradually weakened, based on the long-term trend of reconstructed January temperatures. Furthermore, the results indicate that IWM is connected on interannual- to decadal time scales to climate variability of the tropical and extratropical Pacific, via El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). However, our findings suggest that this relationship appeared to begin to decouple since the beginning of the 20th century. Cross-spectral analysis revealed that several distinct decadal-scale phases of colder climate and accordingly more intense winter monsoon centered at the years ~1800, ~1890 and ~1930 can be linked to changes of the North Atlantic Oscillation (NAO).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The late Neogene was a time of cryosphere development in the northern hemisphere. The present study was carried out to estimate the sea surface temperature (SST) change during this period based on the quantitative planktonic foraminiferal data of 8 DSDP sites in the western Pacific. Target factor analysis has been applied to the conventional transfer function approach to overcome the no-analog conditions caused by evolutionary faunal changes. By applying this technique through a combination of time-slice and time-series studies, the SST history of the last 5.3 Ma has been reconstructed for the low latitude western Pacific. Although the present data set is close to the statistical limits of factor analysis, the clear presence of sensible variations in individual SST time-series suggests the feasibility and reliability of this method in paleoceanographic studies. The estimated SST curves display the general trend of the temperature fluctuations and reveal three major cool periods in the late Neogene, i.e. the early Pliocene (4.7 3.5 Ma), the late Pliocene (3.1-2.7 Ma), and the latest Pliocene to early Pleistocene (2.2-1.0 Ma). Cool events are reflected in the increase of seasonality and meridional SST gradient in the subtropical area. The latest Pliocene to early Pleistocene cooling is most important in the late Neogene climatic evolution. It differs from the previous cool events in its irreversible, steplike change in SST, which established the glacial climate characteristic of the late Pleistocene. The winter and summer SST decreased by 3.3-5.4°C and 1.0 2.1C in the subtropics, by 0.9°C and 0.6C in the equatorial region, and showed little or no cooling in the tropics. Moreover, this cooling event occurred as a gradual SST decrease during 2.2 1.0 Ma at the warmer subtropical sites, while that at cooler subtropical site was an abrupt SST drop at 2.2 Ma. In contrast, equatorial and tropical western Pacific experienced only minor SST change in the entire late Neogene. In general, subtropics was much more sensitive to climatic forcing than tropics and the cooling events were most extensive in the cooler subtropics. The early Pliocene cool periods can be correlated to the Antarctic ice volume fluctuation, and the latest Pliocene early Pleistocene cooling reflects the climatic evolution during the cryosphere development of the northern hemisphere.