648 resultados para dissolved organic C
Resumo:
Leg 27 sediments were analyzed for total carbon and acid-insoluble (organic) carbon using a LECO acid-base Analyzer. The 3-cc sediment samples were first dried at 105°-110°C and then ground to a homogeneous powder. The ground sediment was redried and two samples, a 0.1-g and a 0.5-g sample, were then weighed into LECO clay crucibles. The 0.5-g sample was acidified with diluted hydrochloric acid and washed with distilled water. The sample was then dried and analyzed for acid-insoluble carbon, listed in the table as "organic" carbon. The 0.1-g sample was analyzed for total carbon without further treatment. If the result showed less than 10% CaCO3, an additional 0.5-g sample was analyzed for greater accuracy. The calcium carbon percentages were calculated as follows: (% total C-% organic C) * 8.33 = % CaCO3. Although other carbonates may be present, all acid-soluble carbon was calculated as calcium carbonate. All results are given in weight percent.
Resumo:
The enhanced accumulation of organic matter in Eastern Mediterranean sapropels and their unusually low d15N values have been attributed to either enhanced nutrient availability which led to elevated primary production and carbon sequestration or to enhanced organic matter preservation under anoxic conditions. In order to evaluate these two hypothesis we have determined Ba/Al ratios, amino acid composition, N and organic C concentrations and d15N in sinking particles, surface sediments, eight spatially distributed core records of the youngest sapropel S1 (10-6 ka) and older sapropels (S5, S6) from two locations. These data suggest that (i) temporal and spatial variations in d15N of sedimentary N are driven by different degrees of diagenesis at different sites rather than by changes in N-sources or primary productivity and (ii) present day TOC export production would suffice to create a sapropel like S1 under conditions of deep-water anoxia. This implies that both enhanced TOC accumulation and d15N depletion in sapropels were due to the absence of oxygen in deep waters. Thus preservation plays a major role for the accumulation of organic-rich sediments casting doubt on the need of enhanced primary production for sapropel formation.
Resumo:
In the Persian Gulf and the Gulf of Oman marl forms the primary sediment cover, particularly on the Iranian side. A detailed quantitative description of the sediment components > 63 µ has been attempted in order to establish the regional distribution of the most important constituents as well as the criteria governing marl sedimentation in general. During the course of the analysis, the sand fraction from about 160 bottom-surface samples was split into 5 phi° fractions and 500 to 800 grains were counted in each individual fraction. The grains were cataloged in up to 40 grain type catagories. The gravel fraction was counted separately and the values calculated as weight percent. Basic for understanding the mode of formation of the marl sediment is the "rule" of independent availability of component groups. It states that the sedimentation of different component groups takes place independently, and that variation in the quantity of one component is independent of the presence or absence of other components. This means, for example, that different grain size spectrums are not necessarily developed through transport sorting. In the Persian Gulf they are more likely the result of differences in the amount of clay-rich fine sediment brought in to the restricted mouth areas of the Iranian rivers. These local increases in clayey sediment dilute the autochthonous, for the most part carbonate, coarse fraction. This also explains the frequent facies changes from carbonate to clayey marl. The main constituent groups of the coarse fraction are faecal pellets and lumps, the non carbonate mineral components, the Pleistocene relict sediment, the benthonic biogene components and the plankton. Faecal pellets and lumps are formed through grain size transformation of fine sediment. Higher percentages of these components can be correlated to large amounts of fine sediment and organic C. No discernable change takes place in carbonate minerals as a result of digestion and faecal pellet formation. The non-carbonate sand components originate from several unrelated sources and can be distinguished by their different grain size spectrum; as well as by other characteristics. The Iranian rivers supply the greatest amounts (well sorted fine sand). Their quantitative variations can be used to trace fine sediment transport directions. Similar mineral maxima in the sediment of the Gulf of Oman mark the path of the Persian Gulf outflow water. Far out from the coast, the basin bottoms in places contain abundant relict minerals (poorly sorted medium sand) and localized areas of reworked salt dome material (medium sand to gravel). Wind transport produces only a minimal "background value" of mineral components (very fine sand). Biogenic and non-biogenic relict sediments can be placed in separate component groups with the help of several petrographic criteria. Part of the relict sediment (well sorted fine sand) is allochthonous and was derived from the terrigenous sediment of river mouths. The main part (coarse, poorly sorted sediment), however, was derived from the late Pleistocene and forms a quasi-autochthonous cover over wide areas which receive little recent sedimentation. Bioturbation results in a mixing of the relict sediment with the overlying younger sediment. Resulting vertical sediment displacement of more than 2.5 m has been observed. This vertical mixing of relict sediment is also partially responsible for the present day grain size anomalies (coarse sediment in deep water) found in the Persian Gulf. The mainly aragonitic components forming the relict sediment show a finely subdivided facies pattern reflecting the paleogeography of carbonate tidal flats dating from the post Pleistocene transgression. Standstill periods are reflected at 110 -125m (shelf break), 64-61 m and 53-41 m (e.g. coare grained quartz and oolite concentrations), and at 25-30m. Comparing these depths to similar occurrences on other shelf regions (e. g. Timor Sea) leads to the conclusion that at this time minimal tectonic activity was taking place in the Persian Gulf. The Pleistocene climate, as evidenced by the absence of Iranian river sediment, was probably drier than the present day Persian Gulf climate. Foremost among the benthonic biogene components are the foraminifera and mollusks. When a ratio is set up between the two, it can be seen that each group is very sensitive to bottom type, i.e., the production of benthonic mollusca increases when a stable (hard) bottom is present whereas the foraminifera favour a soft bottom. In this way, regardless of the grain size, areas with high and low rates of recent sedimentation can be sharply defined. The almost complete absence of mollusks in water deeper than 200 to 300 m gives a rough sedimentologic water depth indicator. The sum of the benthonic foraminifera and mollusca was used as a relative constant reference value for the investigation of many other sediment components. The ratio between arenaceous foraminifera and those with carbonate shells shows a direct relationship to the amount of coarse grained material in the sediment as the frequence of arenaceous foraminifera depends heavily on the availability of sand grains. The nearness of "open" coasts (Iranian river mouths) is directly reflected in the high percentage of plant remains, and indirectly by the increased numbers of ostracods and vertebrates. Plant fragments do not reach their ultimate point of deposition in a free swimming state, but are transported along with the remainder of the terrigenous fine sediment. The echinoderms (mainly echinoids in the West Basin and ophiuroids in the Central Basin) attain their maximum development at the greatest depth reached by the action of the largest waves. This depth varies, depending on the exposure of the slope to the waves, between 12 to 14 and 30 to 35 m. Corals and bryozoans have proved to be good indicators of stable unchanging bottom conditions. Although bryozoans and alcyonarian spiculae are independent of water depth, scleractinians thrive only above 25 to 30 m. The beginning of recent reef growth (restricted by low winter temperatures) was seen only in one single area - on a shoal under 16 m of water. The coarse plankton fraction was studied primarily through the use of a plankton-benthos ratio. The increase in planktonic foraminifera with increasing water depth is here heavily masked by the "Adjacent sea effect" of the Persian Gulf: for the most part the foraminifera have drifted in from the Gulf of Oman. In contrast, the planktonic mollusks are able to colonize the entire Persian Gulf water body. Their amount in the plankton-benthos ratio always increases with water depth and thereby gives a reliable picture of local water depth variations. This holds true to a depth of around 400 m (corresponding to 80-90 % plankton). This water depth effect can be removed by graphical analysis, allowing the percentage of planktonic mollusks per total sample to be used as a reference base for relative sedimentation rate (sedimentation index). These values vary between 1 and > 1000 and thereby agree well with all the other lines of evidence. The "pteropod ooze" facies is then markedly dependent on the sedimentation rate and can theoretically develop at any depth greater than 65 m (proven at 80 m). It should certainly no longer be thought of as "deep sea" sediment. Based on the component distribution diagrams, grain size and carbonate content, the sediments of the Persian Gulf and the Gulf of Oman can be grouped into 5 provisional facies divisions (Chapt.19). Particularly noteworthy among these are first, the fine grained clayey marl facies occupying the 9 narrow outflow areas of rivers, and second, the coarse grained, high-carbonate marl facies rich in relict sediment which covers wide sediment-poor areas of the basin bottoms. Sediment transport is for the most part restricted to grain sizes < 150 µ and in shallow water is largely coast-parallel due to wave action at times supplemented by tidal currents. Below the wave base gravity transport prevails. The only current capable of moving sediment is the Persian Gulf outflow water in the Gulf of Oman.
Resumo:
New data are reported on the major- and trace-component compositions of acidic and weakly acidic low-concentration wetland waters and other water types. Special attention was given to dissolved organic compounds: fulvic and humic acids, bitumens, and hydrocarbons. The first comprehensive data are presented for organic trace components in the wetland waters of western Siberia: alkanes, pentacyclic terpenoids, steranes, alkylbenzenes, naphthalenes, phenanthrenes, tetraarenes, etc.
Resumo:
Analytical challenges in obtaining high quality measurements of rare earth elements (REEs) from small pore fluid volumes have limited the application of REEs as deep fluid geochemical tracers. Using a recently developed analytical technique, we analyzed REEs from pore fluids collected from Sites U1325 and U1329, drilled on the northern Cascadia margin during the Integrated Ocean Drilling Program (IODP) Expedition 311, to investigate the REE behavior during diagenesis and their utility as tracers of deep fluid migration. These sites were selected because they represent contrasting settings on an accretionary margin: a ponded basin at the toe of the margin, and the landward Tofino Basin near the shelf's edge. REE concentrations of pore fluid in the methanogenic zone at Sites U1325 and U1329 correlate positively with concentrations of dissolved organic carbon (DOC) and alkalinity. Fractionations across the REE series are driven by preferential complexation of the heavy REEs. Simultaneous enrichment of diagenetic indicators (DOC and alkalinity) and of REEs (in particular the heavy elements Ho to Lu), suggests that the heavy REEs are released during particulate organic carbon (POC) degradation and are subsequently chelated by DOC. REE concentrations are greater at Site U1325, a site where shorter residence times of POC in sulfate-bearing redox zones may enhance REE burial efficiency within sulfidic and methanogenic sediment zones where REE release ensues. Cross-plots of La concentrations versus Cl, Li and Sr delineate a distinct field for the deep fluids (z > 75 mbsf) at Site U1329, and indicate the presence of a fluid not observed at the other sites drilled on the Cascadia margin. Changes in REE patterns, the presence of a positive Eu anomaly, and other available geochemical data for this site suggest a complex hydrology and possible interaction with the igneous Crescent Terrane, located east of the drilled transect.
Resumo:
Biochemical composition of sedimentary organic matter (OM), vertical fluxes and bacterial distribution were studied at 15 stations (95-2270 m depth) in the Aegean Sea during spring and summer. Downward fluxes of labile OM were significantly higher in the northern than in the southern part and were higher in summer than in spring. Primary inputs of OM were not related to sedimentary OM concentrations, which had highest values in summer. Sedimentary chlorophyll-a concentrations were similar in the northern and southern parts. Carbohydrates, the main component of sedimentary OM, were about 1.2 times higher in the southern part than in the northern, without significant temporal changes. Total proteins were higher in summer and about double in the northern part. Sedimentary proteins appeared more dependent upon the downward flux of phytopigment than of proteins. Sedimentary OM was characterised by a relatively large fraction of soluble compounds and showed better quality in the northern part. The lack of a depth-related pattern in sedimentary OM and the similar concentrations in the two areas suggest that differences in sedimentary OM quality in the Aegean basin are dependent on system productivity; the bulk of sedimentary OM is largely conservative. Sedimentary bacterial density was about double in the northern part and higher in spring than in summer, but bacterial size was about three times higher in summer, resulting in a larger bacterial biomass in summer. Bacterial density was coupled with total and protein fluxes, indicating a rapid bacterial response to pelagic production. Bacterial biomass was significantly correlated with sedimentary protein and phytopigment concentrations, indicating a clear response to accumulation of labile OM in the sediments. In all cases bacteria accounted for <5% of the organic C and N pools. The efficiency of benthic bacteria in exploiting protein pools, estimated as amounts of protein available per unit bacterial biomass, indicates a constant ratio of about 70 µg proteins/µg C. This suggests a similar bacterial efficiency all over the area studied, unaffected by different trophic conditions.
Resumo:
Gas hydrate samples were recovered from four sites (Sites 994, 995, 996, and 997) along the crest of the Blake Ridge during Ocean Drilling Program (ODP) Leg 164. At Site 996, an area of active gas venting, pockmarks, and chemosynthetic communities, vein-like gas hydrate was recovered from less than 1 meter below seafloor (mbsf) and intermittently through the maximum cored depth of 63 mbsf. In contrast, massive gas hydrate, probably fault filling and/or stratigraphically controlled, was recovered from depths of 260 mbsf at Site 994, and from 331 mbsf at Site 997. Downhole-logging data, along with geochemical and core temperature profiles, indicate that gas hydrate at Sites 994, 995, and 997 occurs from about 180 to 450 mbsf and is dispersed in sediment as 5- to 30-m-thick zones of up to about 15% bulk volume gas hydrate. Selected gas hydrate samples were placed in a sealed chamber and allowed to dissociate. Evolved gas to water volumetric ratios measured on seven samples from Site 996 ranged from 20 to 143 mL gas/mL water to 154 mL gas/mL water in one sample from Site 994, and to 139 mL gas/mL water in one sample from Site 997, which can be compared to the theoretical maximum gas to water ratio of 216. These ratios are minimum gas/water ratios for gas hydrate because of partial dissociation during core recovery and potential contamination with pore waters. Nonetheless, the maximum measured volumetric ratio indicates that at least 71% of the cages in this gas hydrate were filled with gas molecules. When corrections for pore-water contamination are made, these volumetric ratios range from 29 to 204, suggesting that cages in some natural gas hydrate are nearly filled. Methane comprises the bulk of the evolved gas from all sites (98.4%-99.9% methane and 0%-1.5% CO2). Site 996 hydrate contained little CO2 (0%-0.56%). Ethane concentrations differed significantly from Site 996, where they ranged from 720 to 1010 parts per million by volume (ppmv), to Sites 994 and 997, which contained much less ethane (up to 86 ppmv). Up to 19 ppmv propane and other higher homologues were noted; however, these gases are likely contaminants derived from sediment in some hydrate samples. CO2 concentrations are less in gas hydrate than in the surrounding sediment, likely an artifact of core depressurization, which released CO2 derived from dissolved organic carbon (DIC) into sediment. The isotopic composition of methane from gas hydrate ranges from d13C of -62.5 per mil to -70.7 per mil and dD of -175 per mil to -200 per mil and is identical to the isotopic composition of methane from surrounding sediment. Methane of this isotopic composition is mainly microbial in origin and likely produced by bacterial reduction of bicarbonate. The hydrocarbon gases here are likely the products of early microbial diagenesis. The isotopic composition of CO2 from gas hydrate ranges from d13C of -5.7 per mil to -6.9 per mil, about 15 per mil lighter than CO2 derived from nearby sediment.
Resumo:
New data on chemical and trace component compositions of acidic and low acidic swamp waters and other types of low mineralized waters are reported in the paper. Special attention is paid to dissolved organic compounds: fulvic and humic acids, bitumen, and hydrocarbons. For the first time detailed data on organic trace components (alkanes, pentacyclic terpenoids, steranes, alkylbenzenes, naphthalenes, phenanthrenes, tetraarenes, etc.) in the swamp waters of the Western Siberia: are reported.
Resumo:
We determined changes in equatorial Pacific phosphorus (µmol P/g) and barite (BaSO4; wt%) concentrations at high resolution (2 cm) across the Paleocene/Eocene (P/E) boundary in sediments from Ocean Drilling Program (ODP) Leg 199 Site 1221 (153.40 to 154.80 meters below seafloor [mbsf]). Oxide-associated, authigenic, and organic P sequentially extracted from bulk sediment were used to distinguish reactive P from detrital P. We separated barite from bulk sediment and compared its morphology with that of modern unaltered biogenic barite to check for diagenesis. On a CaCO3-free basis, reactive P concentrations are relatively constant and high (323 µmol P/g or ~1 wt%). Barite concentrations range from 0.05 to 5.6 wt%, calculated on a CaCO3-free basis, and show significant variability over this time interval. Shipboard measurements of P and Ba in bulk sediments are systematically lower (by ~25%) than shore-based concentrations and likely indicate problems with shipboard standard calibrations. The presence of Mn oxides and the size, crystal morphology, and sulfur isotopes of barite imply deposition in sulfate-rich pore fluids. Relatively constant reactive P, organic C, and biogenic silica concentrations calculated on a CaCO3-free basis indicate generally little variation in organic C, reactive P, and biogenic opal burial across the P/E boundary, whereas variable barite concentrations indicate significant changes in export productivity. Low barite Ba/reactive P ratios before and immediately after the Benthic Extinction Event (BEE) may indicate efficient nutrient burial, and, if nutrient burial and organic C burial are linked, high relative organic C burial that could temporarily drawdown CO2 at this site. This interpretation requires postdepositional oxidation of organic C because organic C to reactive P ratios are low throughout the section. After the BEE, higher barite Ba/reactive P ratios combined with higher barite Ba concentrations may imply that higher export productivity was coupled with unchanged reactive P burial, indicating efficient nutrient and possibly also organic C recycling in the water column. If the nutrient recycling is decoupled from organic C, the high export production could be indicative of drawdown of CO2. However, the observation that organic C burial is not high where barite burial is high may imply that either C sequestration was restricted to the deep ocean and thus occurred only on timescales of the deep ocean mixing or that postdepositional oxidation (burn down) of organic matter affected the sediments. The decoupling of barite and opal may result from low opal preservation or production that is not diatom based.
Resumo:
The distributions of calcium carbonate, of amorphous silica, and of 21 chemical compounds and elements in sediments of Holes 515A, 515B, 516, 516F, 517, and 518 are highly nonuniform; they change depending on the sediment types, grain size, and mineral composition. The main source of the lithogenous elements (K, Li, Rb, Fe, Ti, Zr, Ni, Cr, Sn) is terrigenous matter of South America. These elements correlate well or at least satisfactorily with each other and with the sum of clay minerals. CaCO3, amorphous SiO2 and organic C form a second group, the main source of which is biota of the ocean. Zn, Cu, Ba, Mo, (V, Na) are a third group, which is supplied by both terrigenous and biogenic matter. Judging by the distribution of chemical elements and components in sediments of Site 515, this area of the Brazil Basin is characterized by the rather constant conditions of pelagic terrigenous sedimentation from upper Eocene till Holocene. Small changes in chemical composition of sediments throughout the section are linked mainly to the evolution of subaerial source provinces, changes in hydrodynamic regime, and fluctuations of the ocean level. The chemical composition of sediments from the Rio Grande Rise sites suggests the existence of three main stages of sedimentation in this area. The first stage is the initial period of sediment accumulation on basalts at the beginning of the Late Cretaceous. Then followed sedimentary conditions notable for their sharp changes in chemical composition and type. Beginning in the middle Eocene and persisting into the Holocene, stable conditions of sedimentation characterize a third stage, represented by the formation of approximately 700 m of nannofossil oozes of rather monotonous chemical composition.
Resumo:
Transition of Zn, Cu, Cd, and Pb into solution is studied for experimental suspensions of coastal marine sediments with different degrees of pollution from the Amur Bay (Sea of Japan) over 30-70 days. Concentrations of dissolved metals were measured by a voltammetry method. Transition of Zn and Cd into solution was shown to be linearly dependent on initial pollution of sediments with these metals. Cadmium mobilization is due to gradual degradation of organic matter from sediments. Under degradation processes Zn quickly goes into solution during sedimentation and from silts, while in case of polluted sediments it is slowly mobilized during oxidation of sulfides. Behavior of Cu is complex because of binding of mobilized metal by dissolved organic compounds. Transition of lead into solution is negligible. Calculation of potential transition of metals from sediments into water on the basis of experimental data and its comparison with downward sedimentary flux showed that in the studied area secondary pollution of water by aerobic degradation of sediments is possible only for Cd.
Resumo:
An analysis was made of composition and content of nutrients, salts, particulate and dissolved organic matter, and various plankton groups in a series of samples collected by a 140-liter sampling bottle to depth up to 150 m at 4 equatorial stations between 97° and 154°W. Large and small phytoplankton, bacteria (aggregated and dispersed), heterotrophic flagellates, infusorians, radiolarians, foraminifers, fine filter-feeders, small and large, mostly herbivorous copepods, cyclopoids, predatory calanoids, and other predators were investigated separately. Trophic relations between these elements are established from personal and published data, and rate of their metabolism and some other physiological parameters are determined. Such functional characteristics as extent of satisfaction of food requirements of organisms belonging to various trophic groups, intensity of trophic relations, balance between production and consumption by individual elements of the community, ecological efficiency, and net and specific production of the groups distinguished, of individual trophic levels, of total zooplankton, and of the community as a whole are calculated. Variations of these characteristics along the equator with decreasing upwelling intensity are examined and their possible causes and mechanisms are discussed.
Resumo:
Duplicate, filtered samples of North Atlantic Deep Water (NADW) were irradiated for 28 days in a solar simulator. Duplicate dark controls were placed alongside the irradiated samples. After 28 days, samples were extensively photo-degraded based upon colored dissolved organic matter (CDOM) photo-bleaching (> 95%). Samples were solid phase extracted using PPL resin to isolate, concentrate and desalt the dissolved organic matter (DOM) in the samples. Ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) enabled 3024 molecular formulas to be identified in the dark control. Photo-degradation decreased molecular diversity, with 2402 formulas assigned post-irradiation. Molecular formulas were classified based upon their photo-lability as 1) photo-resistant; 2) photo-labile; and, 3) photo-produced. Photo-resistant DOM made up 73% of all formulas and was dominated by highly unsaturated molecular signatures consistent with carboxylic-rich alicyclic molecules, suggesting that these apparently bio-refractory compounds may also survive multiple passages through sunlit surface waters and thus accumulate for timeframes exceeding ocean ventilation. Photo-labile DOM was enriched in low molecular weight formulas, aromatic molecular formulas, and sulfur and phosphorous containing formulas. Compounds containing both sulfur and nitrogen were particularly photo-labile and may represent an underappreciated component of the photo-reactive CDOM pool. Photo-produced DOM was enriched in higher molecular weight formulas, as well as aliphatic and peptide formulas. Molecular formulas are indexed by their photo-lability classification in the supplementary information.