674 resultados para Atlantic east of
Resumo:
Comparison of rates of accumulation of organic carbon in surface marine sediments from the central North Pacific, the continental margins off northwest Africa, northwest and southwest America, the Argentine Basin, and the western Baltic Sea with primary production rates suggests that the fraction of primary produced organic carbon preserved in the sediments is universally related to the bulk sedimentation rate. Accordingly, less than 0.01% of the primary production becomes fossilized in slowly accumulating pelagic sediments [(2 to 6 mm (1000 y)**-1] of the Central Pacific, 0.1 to 2% in moderately rapidly accumulating [2 to 13 cm (1000 y)**-1] hemipelagic sediments off northwest Africa, northwest America (Oregon) and southeast America (Argentina), and 11 to 18% in rapidly accumulating [66 to 140 cm (1000 y)**-1] hemipelagic sediments off southwest America (Peru) and in the Baltic Sea. The emiprical expression: %Org-C = (0.0030*R*S**0.30)/(ps(1-Theta)) implies that the sedimentary organic carbon content (% Org-C) doubles with each 10-fold increase in sedimentation rate (S), assuming that other factors remain constant; i.e., primary production (R), porosity and sediment density (ps). This expression also predicts the sedimentary organic carbon content from the primary production rate, sedimentation rate, dry density of solids, and their porosity; it may be used to estimate paleoproductivity as well. Applying this relationship to a sediment core from the continental rise off northwest Africa (Spanish Sahara) suggests that productivity there during interglacial oxygen isotope stages 1 and 5 was about the same as today but was higher by a factor of 2 to 3 during glacial stages 2, 3, and 6.
Resumo:
During Deep Sea Drilling Project Leg 93, upper Miocene through Quaternary sediments were continuously cored in Hole 604, located on the upper continental rise of the New Jersey transect (western North Atlantic). A detailed biostratigraphic study of these strata has been made using the vertical distribution of planktonic foraminifers. The Quaternary climatic zonation of Ericson and Wollin (1968) has been tentatively delineated and all the Pliocene zones and subzones (sensu Berggren, 1977) have been recognized. The rate of sedimentation was slow during most of the Pliocene but underwent a significant acceleration in the early Pleistocene. Quantitative variations in the distribution of planktonic foraminifers appear to be influenced by various factors, such as hydrodynamic winnowing resulting from the action of bottom currents and surficial thermal conditions caused by climatic changes. Both dissolution intervals and brief increases in the coarser detrital input seem, most of the time, to be correlated with indications of climatic cooling and may correspond to glacial events or cycles. This chapter delineates a precursor stage in the inception of Northern Hemisphere glaciation at 3 Ma and wide-scale Quaternary glacial-interglacial cycles. Data from a detailed study of Hole 604 are briefly compared with the main sedimentary and microfaunal features of contemporaneous series previously drilled along the east American margin in the northwestern Atlantic. One of the striking observations appears to be the intense redistribution of sediments that affected this region in Neogene-Quaternary times.
Resumo:
The speciation of strongly chelated iron during the 22-day course of an iron enrichment experiment in the Atlantic sector of the Southern Ocean deviates strongly from ambient natural waters. Three iron additions (ferrous sulfate solution) were conducted, resulting in elevated dissolved iron concentrations (Nishioka, J., Takeda, S., de Baar, H.J.W., Croot, P.L., Boye, M., Laan, P., Timmermans, K.R., 2005, Changes in the concentration of iron in different size fractions during an iron enrichment experiment in the open Southern Ocean. Marine Chemistry, doi:10.1016/j.marchem.2004.06.040) and significant Fe(II) levels (Croot, P.L., Laan, P., Nishioka, J., Strass, V., Cisewski, B., Boye, M., Timmermans, K.R., Bellerby, R.G., Goldson, L., Nightingale, P., de Baar, H.J.W., 2005, Spatial and Temporal distribution of Fe(II) and H2O2 during EisenEx, an open ocean mescoscale iron enrichment. Marine Chemistry, doi:10.1016/j.marchem.2004.06.041). Repeated vertical profiles for dissolved (filtrate < 0.2 µm) Fe(III)-binding ligands indicated a production of chelators in the upper water column induced by iron fertilizations. Abiotic processes (chemical reactions) and an inductive biologically mediated mechanism were the likely sources of the dissolved ligands which existed either as inorganic amorphous phases and/or as strong organic chelators. Discrete analysis on ultra-filtered samples (< 200 kDa) suggested that the produced ligands would be principally colloidal in size (> 200 kDa-< 0.2 µm), as opposed to the soluble fraction (< 200 kDa) which dominated prior to the iron infusions. Yet these colloidal ligands would exist in a more transient nature than soluble ligands which may have a longer residence time. The production of dissolved Fe-chelators was generally smaller than the overall increase in dissolved iron in the surface infused mixed layer, leaving a fraction (about 13-40%) of dissolved Fe not bound by these dissolved Fe-chelators. It is suggested that this fraction would be inorganic colloids. The unexpected persistence of such high inorganic colloids concentrations above inorganic Fe-solubility limits illustrates the peculiar features of the chemical iron cycling in these waters. Obviously, the artificial about hundred-fold increase of overall Fe levels by addition of dissolved inorganic Fe(II) ions yields a major disruption of the natural physical-chemical abundances and reactivity of Fe in seawater. Hence the ensuing responses of the plankton ecosystem, while in itself significant, are not necessarily representative for a natural enrichment, for example by dry or wet deposition of aeolian dust. Ultimately, the temporal changes of the Fe(III)-binding ligand and iron concentrations were dominated by the mixing events that occurred during EISENEX, with storms leading to more than an order of magnitude dilution of the dissolved ligands and iron concentrations. This had strongest impact on the colloidal size class (> 200 kDa-< 0.2 µm) where a dramatic decrease of both the colloidal ligand and the colloidal iron levels (Nishioka, J., Takeda, S., de Baar, H.J.W., Croot, P.L., Boye, M., Laan, P., Timmermans, K.R., 2005, Changes in the concentration of iron in different size fractions during an iron enrichment experiment in the open Southern Ocean. Marine Chemistry, doi:10.1016/j.marchem.2004.06.040) was observed.
(Table 1) Major element oxides of basalts obtained during R/V Akademik Nikolaj Strakhov cruise ANS25
Resumo:
Measurements of Fe(II) and H2O2 were carried out in the Atlantic sector of the Southern Ocean during EisenEx, an iron enrichment experiment. Iron was added on three separate occasions, approximately every 8 days, as a ferrous sulfate (FeSO4) solution. Vertical profiles of Fe(II) showed maxima consistent with the plume of the iron infusion. While H2O2 profiles revealed a corresponding minima showing the effect of oxidation of Fe(II) by H2O2, observations showed detectable Fe(II) concentrations existed for up to 8 days after an iron infusion. H2O2 concentrations increased at the depth of the chlorophyll maximum when iron concentrations returned to pre-infusion concentrations (<80 pM) possibly due to biological production related to iron reductase activity. In this work, Fe(II) and dissolved iron were used as tracers themselves for subsequent iron infusions when no further SF6 was added. EisenEx was subject to periods of weak and strong mixing. Slow mixing after the second infusion allowed significant concentrations of Fe(II) and Fe to exist for several days. During this time, dissolved and total iron in the infusion plume behaved almost conservatively as it was trapped between a relict mixed layer and a new rain-induced mixed layer. Using dissolved iron, a value for the vertical diffusion coefficient Kz=6.7±0.7 cm**2/s was obtained for this 2-day period. During a subsequent surface survey of the iron-enriched patch, elevated levels of Fe(II) were found in surface waters presumably from Fe(II) dissolved in the rainwater that was falling at this time. Model results suggest that the reaction between uncomplexed Fe(III) and O2? was a significant source of Fe(II) during EisenEx and helped to maintain high levels of Fe(II) in the water column. This phenomenon may occur in iron enrichment experiments when two conditions are met: (i) When Fe is added to a system already saturated with regard to organic complexation and (ii) when mixing processes are slow, thereby reducing the dispersion of iron into under-saturated waters.
Resumo:
A biostratigraphically continuous, but intensely bioturbated, Cretaceous/Tertiary boundary sequence was cored during Ocean Drilling Program (ODP) Leg 113 on Maud Rise (65°S) in the Weddell Sea off East Antarctica. This interval is the first recovered by ODP/DSDP in the South Atlantic sector of the Southern Ocean and offers a unique opportunity to study the nannofossil sequences leading up to and beyond the terminal Cretaceous event at a high southern latitude. The K/T boundary lies just within Chron 29R and is placed at ODP Sample 113-690C-15X-4, 41.5 cm. An iridium anomaly was independently noted at about this level as well. Upper Maestrichtian-lower Paleocene sediments consist mostly of light-colored nannofossil chalks. Dark brown sediments at the base of the Danian (Zone CPla) are characterized by an increased clay content attributed to a drop in calcareous microplankton productivity following the terminal Cretaceous event. Although delineation of the boundary is hampered by intense bioturbation, the sharp color contrast between overlying clay-rich, dark brown chalks of the Tertiary and light cream colored chalks of the Cretaceous aids in the selection of the K/T horizon. Several dark colored burrows sampled at intervals as far as 1.3 m below the boundary and within the light colored Cretaceous chalk were found to contain up to 17% Tertiary nannofossils. Calcareous nannofossils from the boundary interval were divided into three groups for quantitative study. The three groups, "Cretaceous," "Tertiary," and "Survivor," exhibit a sequential change across the boundary with the Cretaceous forms giving way to a Survivor-dominated assemblage beginning at the boundary followed shortly thereafter by the appearance of the Tertiary taxa, Cruciplacolithus and Hornibrookina. The species, H. edwardsii, comprises nearly 50% of the assemblage just above the Zone CPla/CPlb boundary, an abundance not reported elsewhere at this level. Calculation of individual species abundances reveals several additional differences between this K/T boundary interval and those studied from middle and low latitude sections. The percentage of Thoracosphaera is much lower at the boundary in this section and a small form, Prediscosphaera stoveri, is extremely abundant in Cretaceous sediments just below the boundary.
Resumo:
Vertical profiles of dissolved and particulate 230Th and 231Pa were obtained across the Antarctic Circumpolar Current (ACC) in the southern Atlantic. North of the Polar Front, dissolved and total 230Th increase with depth in conformity with published scavenging models. There is no depletion of 230Th or 231Pa in the water column south of the Polar Front, thought to be an area of enhanced biological productivity. 230Th concentrations increase three-fold to the Weddell Sea across the ACC. Dissolved and total 231Pa concentrations are relatively constant below 500 m depth at about 0.3 dpm m**-3, and change little with depth or latitude. The results from the Weddell Gyre are explained by a mixing-scavenging model that takes into account the input of lower Circumpolar Deep Water through upwelling, which is the main source of water in the Weddell Gyre and is enriched in 230Th but not in 231Pa. 230Th accumulates in the Weddell Gyre as a result of a reduction in the scavenging rate and by ingrowth from 234U. Ingrowth is more significant for 230Th than for 231Pa because the residence time of water in the gyre (about 35 years) is similar to the scavenging residence time of Th in the south Atlantic (29 years) but shorter than that of Pa (120 years). It is argued that changes in 230Th accumulation in the past may reflect changes in water residence time and in the formation rate of Weddell Sea Deep Water.