726 resultados para the Yellow Sea


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Past sea surface temperature (SST) evolution in the Alboran Sea (western Mediterranean) during the last 50,000 years has been inferred from the study of C37 alkenones in International Marine Global Change Studies MD952043 core. This record has a time resolution of ~200 years allowing the study of millennial-scale and even shorter climatic changes. The observed SST curve displays characteristic sequences of extremely rapid warming and cooling events along the glacial period. Comparison of this Alboran record with delta18O from Greenland ice (Greenland Ice Sheet Project 2 core) shows a strong parallelism between these SST oscillations and the Dansgaard-Oeschger events. Five prominent cooling episodes standing out in the SST profile are accompanied by an anomalous high abundance of Neogloboquadrina pachyderma sinistral which is confined to the duration of these cold intervals. These features and the isotopic record reflect drastic changes in the surface hydrography of the Alboran Sea in association with Heinrich events Hl-5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A radiocarbon survey of primary production in the Arabian Sea was carried out during May to July 1966. Production ranged from 0.8 to 30 mg C/m**3 per day at the surface, and from 0.1 to 3 g C/m**2 per day in the photosynthetic layer. At most stations photosynthesis was found to be maximum at depths of 25-30 m, and its lower limit was at 75 m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the evolutionary history of threatened populations can improve their conservation management. Re-establishment of past but recent gene flow could re-invigorate threatened populations and replenish genetic diversity, necessary for population persistence. One of the four nominal subspecies of the common yellow-tufted honeyeater, Lichenostomus melanops cassidix, is critically endangered despite substantial conservation efforts over 55 years. Using a combination of morphometric, genetic and modelling approaches we tested for its evolutionary distinctiveness and conservation merit. We confirmed that cassidix has at least one morphometric distinction. It also differs genetically from the other subspecies in allele frequencies but not phylogenetically, implying that its evolution was recent. Modelling historical distribution supported the lack of vicariance and suggested a possibility of gene flow among subspecies at least since the late Pleistocene. Multi-locus coalescent analyses indicated that cassidix diverged from its common ancestor with neighbouring subspecies gippslandicus sometime from the mid-Pleistocene to the Holocene, and that it has the smallest historical effective population size of all subspecies. It appears that cassidix diverged from its ancestor with gippslandicus through a combination of drift and local selection. From patterns of genetic subdivision on two spatial scales and morphological variation we concluded that cassidix, gippslandicus and (melanops + meltoni) are diagnosable as subspecies. Low genetic diversity and effective population size of cassidix may translate to low genetic fitness and evolutionary potential, thus managed gene flow from gippslandicus is recommended for its recovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little is known concerning the effect of CO2 on phytoplankton ecophysiological processes under nutrient and trace element-limited conditions, because most CO2 manipulation experiments have been conducted under elements-replete conditions. To investigate the effects of CO2 and iron availability on phytoplankton ecophysiology, we conducted an experiment in September 2009 using a phytoplankton community in the iron limited, high-nutrient, low-chlorophyll (HNLC) region of the Bering Sea basin . Carbonate chemistry was controlled by the bubbling of the several levels of CO2 concentration (180, 380, 600, and 1000 ppm) controlled air, and two iron conditions were established, one with and one without the addition of inorganic iron. We demonstrated that in the iron-limited control conditions, the specific growth rate and the maximum photochemical quantum efficiency (Fv/Fm) of photosystem (PS) II decreased with increasing CO2 levels, suggesting a further decrease in iron bioavailability under the high-CO2 conditions. In addition, biogenic silica to particulate nitrogen and biogenic silica to particulate organic carbon ratios increased from 2.65 to 3.75 and 0.39 to 0.50, respectively, with an increase in the CO2 level in the iron-limited controls. By contrast, the specific growth rate, Fv/Fm values and elemental compositions in the iron-added treatments did not change in response to the CO2 variations, indicating that the addition of iron canceled out the effect of the modulation of iron bioavailability due to the change in carbonate chemistry. Our results suggest that high-CO2 conditions can alter the biogeochemical cycling of nutrients through decreasing iron bioavailability in the iron-limited HNLC regions in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

46 hydropolyp species of 28 genera and 10 families were sampled during the "Meteor" passage 1964/65 (IIOE) through the Red Sea and its northern and southern exits and on the occasion of several ecological investigations of 29 selected coral reef sections of the central Red Sea and the Gulf of Aqaba. These collections comprise 128 single records of hydropolyp species. Three species and two genera each with one species are doubtful. 25 species, seven genera, one family and one subfamily, together from 49 records have not previously been found in the Red Sea and its exits. Including these newly reported species, the total list increases from 64 species and 112 records to 89 species and 240 single records and 51 additional ones. Scanning microscopical photos, made for the first time for the illustration of the hydropolyps, have been shown to be suitable for a better characterization and diagnosis of the species. Qualified results on the reasons for the horizontal distribution of the species known from the Red Sea area cannot be given because of the low number of samples sporadically distributed through the whole area. In contrast with this fact, the vertical spread of the species sampled seems primarily to be regulated by water exchange and light intensity. For example, four species of hydropolyps are excellent indicators of certain abiotic factors or combinations of them: Gymnangium eximium reacts extremely stenophote-photophobe-rheophil, Eudendrium ramosum moderately stenophote-photophobe-rheophobe, Lytocarpus philippinus moderately stenophote-photophil-rheophil, and Halocordyle disticha var. australis extremely stenophote-photophil but moderately rheophil. Other species have been found throughout all the light zones. Combined with the small size of their colonies their euryphotic behaviour does not allow their use as indicator species.