644 resultados para oceanic crust
Resumo:
Three main depositional sequences have been determined in the seismic records taken off West Spitsbergen (1) a Plio-Pleistocene sequence SPI-I with velocities of 1.7 to 2.8 km/sec; (2) a Pliocene allochthonous sequence SPI-II with velocities of 2.4 to 2.8 km/sec underlying unconformity U1; (3) a pre-Middle Oligocene sequence SPI-III with velocities of 2.9 to 4.8 km/sec underlying a distinct unconformity (U2) and deposited in front of the downfaulted Spitsbergen Platform indicating some opening of the Greenland Sea already before tbe time of magnetic anomaly 13 (36 m.y.b.p.). A marked change in the seismic configuration of the oceanic basement has been observed about 30 to 40 km east of the central Knipovich graben. The transition from the oceanic crust of the Knipovich Ridge to the strongly faulted, continental substratum of the Spitsbergen Platform occurs over a narrow zone and is associated with a pre-Middle Oligocene depocenter.
Resumo:
During Ocean Drilling Program (ODP) Leg 180, 11 sites were drilled in the vicinity of the Moresby Seamount to study processes associated with the transition from continental rifting to seafloor spreading in the Woodlark Basin. This paper presents thermochronologic (40Ar/39Ar, 238U/206Pb, and fission track) results from igneous rocks recovered during ODP Leg 180 that help constrain the latest Cretaceous to present-day tectonic development of the Woodlark Basin. Igneous rocks recovered (primarily from Sites 1109, 1114, 1117, and 1118) consist of predominantly diabase and metadiabase, with minor basalt and gabbro. Zircon ion microprobe analyses gave a 238U/206Pb age of 66.4 ± 1.5 Ma, interpreted to date crystallization of the diabase. 40Ar/39Ar plagioclase apparent ages vary considerably according to the degree to which the diabase was altered subsequent to crystallization. The least altered sample (from Site 1109) yielded a plagioclase isochron age of 58.9 ± 5.8 Ma, interpreted to represent cooling following intrusion. The most altered sample (from Site 1117) yielded an isochron age of 31.0 ± 0.9 Ma, interpreted to represent a maximum age for the timing of subsequent hydrothermal alteration. The diabase has not been thermally affected by Miocene-Pliocene rift-related events, supporting our inference that these rocks have remained at shallow and cool levels in the crust (i.e., upper plate) since they were partially reset as a result of middle Oligocene hydrothermal alteration. These results suggest that crustal extension in the vicinity of the Moresby Seamount, immediately west of the active seafloor spreading tip, is being accommodated by normal faulting within latest Cretaceous to early Paleocene oceanic crust. Felsic clasts provide additional evidence for middle Miocene and Pliocene magmatic events in the region. Two rhyolitic clasts (from Sites 1110 and 1111) gave zircon 238U/206Pb ages of 15.7 ± 0.4 Ma and provide evidence for Miocene volcanism in the region. 40Ar/39Ar total fusion ages on single grains of K-feldspar from these clasts yielded younger apparent ages of 12.5 ± 0.2 and 14.4 ± 0.6 Ma due to variable sericitization of K-feldspar phenocrysts. 238U/206Pb zircon, 40Ar/39Ar K-feldspar and biotite total fusion, and apatite fission track analysis of a microgranite clast (from Site 1108) provide evidence for the existence of a rapidly cooled 3.0 to 1.8 Ma granitic protolith. The clast may have been transported longitudinally from the west (e.g., from the D'Entrecasteaux Islands). Alternatively, it may have been derived from a more proximal, but presently unknown, source in the vicinity of the Moresby Seamount.
Resumo:
Thirty-four sediment and mudline temperatures were collected from six drill holes on ODP Leg 110 near the toe of the Barbados accretionary complex. When combined with thermal conductivity measurements these data delineate the complicated thermal structure on the edge of this convergent margin. Surface heat-flow values from Leg 110 (calculated from geothermal gradients forced through the bottom-water temperature at mudline) of 92 to 192 mW/m**2 are 80% to 300% higher than values predicted by standard heat flow vs. age models for oceanic crust, but are compatible with earlier surface measurements made at the same latitude. Measured heat flow tends to decrease downhole at four sites, suggesting the presence of heat sources within the sediments. These results are consistent with the flow of warm fluid through the complex along sub-horizontal, high-permeability conduits, including thrust faults, the major decollement zone, and sandy intervals. Simple calculations suggest that this flow is transient, occurring on time scales of tens to tens of thousands of years. High heat flow in the vicinity of 15°30'N and not elsewhere along the deformation front suggests that the Leg 110 drill sites may be situated over a fluid discharge zone, with dewatering more active here than elsewhere along the accretionary complex.
Resumo:
Geochemical well logs were used to measure the dry weight percent oxide abundances of Si, Al, Ca, Mg, Fe, Ti, and K and the elemental abundances of Gd, S, Th, and U at 0.15-m intervals throughout the basement section of Hole 504B. These geochemical data are used to estimate the integrated chemical exchange resulting from hydrothermal alteration of the oceanic crust that has occurred over the last 5.9 Ma. A large increase in Si in the transition zone between pillows and dikes (Layers 2B and 2C) indicates that mixing of hot, upwelling hydrothermal fluids with cold, downwelling seawater occurred in the past at a permeability discontinuity at this level in the crust, even though the low-to-high permeability boundary in Hole 504B is now 500 m shallower (at the Layer 2A/2B boundary). The observations of extensive Ca loss and Mg gain agree with chemical exchanges recorded in the laboratory in experiments on the reactions that occur between basalt and seawater at high temperatures. The K budget requires significant addition to Layer 2A from both high-temperature depletion in Layers 2B and 2C and low-temperature alteration by seawater. Integrated water/rock ratios are derived for the mass of seawater required to add enriched elements and for the mass of hydrothermal fluid required to remove depleted elements in the crust at Hole 504B.
Resumo:
DSDP Hole 504B is the only hole in oceanic crust to penetrate through the volcanic section and into hydrothermally altered sheeted dikes. We have carried out petrologic and sulfur isotopic analyses of sulfide and sulfate minerals and whole rocks from the core in order to place constraints on the geochemistry of sulfur during hydrothermal alteration of ocean crust. The nearly 600 m-thick pillow section has lost sulfur to seawater and has net d34S = -1.8 per mil due to degassing of SO2 during crystallization and subsequent low temperature interaction with seawater. Hydrothermally altered rocks in the 200 m-thick transition zone are enriched in S and 34S (4300 ppm and +3.0 +/-1.2 per mil, respectively), whereas the more than 500 m of sheeted dikes contain 720 ppm S with d34S = +0.6 +/-1.4 per mil. These data are consistent with the presence of predominantly basaltic sulfur in hydrothermal fluids deep in the crust: following precipitation of anhydrite during seawater recharge, small amounts of seawater sulfate were reduced at temperatures >250°C through conversion of igneous pyrrhotite to secondary pyrite and minor oxidation of ferrous iron in the crust. The S- and 34S-enrichments of the transition zone are the results of seawater sulfate reduction and sulfide deposition during subsurface mixing between upwelling hot (up to 350°C) hydrothermal fluids and seawater. Seawater sulfate was probably reduced through oxidation of ferrous iron in hydrothermal fluids and in the transition zone rocks. Alteration of the upper crust resulted in loss of basaltic sulfur to seawater, fixation of minor seawater sulfur in the crust and redistribution of magmatic sulfur within the crust. This caused net increases in sulfur content and d34S of the upper 1.8 km of the oceanic crust.
Resumo:
To evaluate the possible contribution of ocean floor sediments during the genesis of the volcanism of Vanuatu (New Hebrides) active margin, we have determined the balance of Sr isotopes and K, Rb and Sr contents for the stratigraphic column of site 286 (leg 30, DSDP). This site is located on the oceanic plate that will be subducted. Analyses have been performed on sedimentary and igneous rocks, before and after acid leaching. The Sr isotopic data do not support the occurrence of some continental component in arc magmas of this active margin which is really intraoceanic. It is demonstrated that the d'Entrecasteaux fracture zone results from the intense fracturing of typical oceanic crust. The analyses of the volcanogenic components of the sediments show a change in the source of volcanoclastic detritus from the Loyalty islands in the Eocene to the volcanic arc of Vanuatu (New Hebrides) during Pliocene and Quaternary times. The determined balance of Sr isotopes and of K, Rb, Sr contents, may be used for calculation of multicomponent melting mixing models for the origin of Vanuatu arc magmas, but we emphasize that in these models the Sr isotopes cannot be considered as an appropriated tracer of sediment contribution.
Resumo:
Li-delta18O-SiO2 relationships have been examined for suites of spilitized basaltic rocks (DSDP 504B; Xigaze Ophiolite; Blanco Fracture Zone; Greater Caucasus; Rhenohercynian Fold Belt) and intra-plate evolved tholeiites (Northern Hessian Depression and Vogelsberg, W Germany; Mount Falla, Transantarctic Mountains). Relative to unaltered MORB and intra-plate primary olivine tholeiites, both the spilitic rocks and the evolved tholeiites are characterized by Li and 18O enrichment. For the spilitic rocks, Li and 18O enrichment is accompanied by a loss of SiO2 as a result of seawater hydrothermal alteration, whereas the evolved tholeiites have gained SiO2, Li and 18O from fractionation of mafic phases and assimilation of crustal rocks. On Li vs. SiO2 and delta18O vs. SiO2 diagrams, the two rock groups plot largely in distinct fields, suggesting the possibility of so distinguishing between such lithologies in the ancient rock record. Mafic granulite xenoliths from the Northern Hessian Depression have elevated Li and 18O abundances at low SiO2 contents. Even after correction for extraction of felsic components, their Li-delta18O-SiO2 signatures plot within the field of spilitic protoliths, suggesting that the lower crust in this region contains relics of spilitic rocks from a former oceanic crust.
Resumo:
The book summarizes materials obtained by Soviet scientists during participation in legs of D/S Glomar Challenger and in post-cruise studies. Results on stratigraphy and lithology of the sedimentary cover, petrography and geochemistry of magmatic rocks of the oceanic crust are discussed in the book. A modern analysis of the geophysical structure of the oceanic crust and of the tectonic structure of the ocean floor is given.
Resumo:
A manganese oxide encrustation (2.5 kg) was dredged, in an island arc setting, downslope of Bertrand bank, a seamount culminating at 70-m depth and located NNE of Grande-Terre, Guadeloupe, and SE of Antigua, West Indies. A thorough texturai analysis indicated a rhythmic precipitation and growth polarity as well as mineralogical ( 10 A tektomanganate) and geochemical (low concentrations of Ni, Cu, Co, Zn, Pb and REE) criteria, point to a submarine hydrothermal origin for most of the sample. The crust was coated with a fine ferromanganese oxide cortex deposited iii a "normal" oceanic environment; it also included micritic fillings, a main pyroclastic zone near the top of the crust, and a Mg-Al sulphate deposit. Planktonic foraminifera coeval with the precipitation of the manganese oxide indicate an age of ca. 3 m. y. (upper Pliocene); i.e., more than 20 m. y. after the cessation of the volcanic activity of the Lesser Antilles outer arc that was responsible for the buildup of the Bertrand seamount. Furthermore, the genesis of the crust is not linked to the activity of the contemporaneous inner arc (Miocene to Present), particularly of its nearmost segment (Basse Terre, Guadeloupe-Montserrat) located about 50 km to the West. The authors suggest that the manganese oxide is the result of convective circulation of sea water through a faulted system occurring in an area of intense seismic activity. The remobilization of chemical elements (Mn, S, etc.) within the seamount volcanic core bas probably affected a substratum that was still hydrothermally altered during the previous volcanic activity of the outer arc. The authors insist on the interest in using texturai analysis for Fe/Mn oxide investigations.
Resumo:
SIMS analyses have been carried out on clinopyroxenes, plagioclases and amphiboles of six gabbroic samples from Holes 921-924 of the Ocean Drilling Program Leg 153 sited in the MARK area of the Mid-Atlantic Ridge at the ridge-transform intersection, to investigate the rare earth, trace and volatile element distribution in the lower ocean crust during igneous crystallization and higher grade metamorphic conditions. The metagabbros underwent granulite to subgreenschist facies conditions through three main tectono-metamorphic phases: (1) ductile regime (750 < T < 1000 °C and P = 0.3 GPa); (2) transitional regime (600 < T < 700 °C and P = 0.2 GPa); (3) brittle regime (350 < T < 600 °C and P < 0.2 GPa). Igneous clinopyroxenes show Cl-chondrite normalized patterns depleted in LREE, and nearly flat for HREE. The rare earth and trace element distributions in igneous clinopyroxenes and plagioclases indicate that these minerals act as REE reservoirs, and comprise the main contribution to the overall rock content. The abundances in igneous minerals reflect the degree of fractionation of the parent liquids. In metamorphic clinopyroxenes recrystallized in anhydrous assemblages, the REE and trace elements patterns mimic those of the primary ones. Conversely, clinopyroxerie re-equilibrated in amphibolebearing assemblages shows a significant increase in REE, Ti, Zr, Y and V, a negative Eu anomaly, and slight decreases in Sr and Ba. An overall increase of REE and some trace elements is evident in hydrous assemblages, with preferential partitioning in the amphibole. It shows high Ti (18196-22844 ppm), LREE depleted patterns and LaN/SmN = 0.10-0.33, LaN/YbN = 0.10-0.30. Amphiboles from granoblastic assemblages show homogeneous patterns with no or a positive anomaly for TiN and negative anomalies for SrN and ZrN. Volatiles in amphibole are low, with Cl/F < 1; H2O% is significantly lower than the stoichiometric ratio (1.33-1.53%). The composition of the clinopyroxene and amphibole recrystallized in low-strain domains records evidence of incomplete re-equilibration, and element diffusion and partitioning is in part controlled by the textural site. The possible origins of the fluids involved in the metamorphic recrystallization are discussed: (1) remobilization from igneous amphibole; (2) exsolution from evolved melts; (3) introduction of seawater-derived fluids modified in rock-dominated systems; (4) injection of highly evolved hydrous melts during the metamorphic process.