698 resultados para Southwestern Atlantic Ocean
Resumo:
The thermal structure of the upper ocean (0-1000 m) is set by surface heat fluxes, shallow wind-driven circulation, and the deeper thermohaline circulation. Its long-term variability can be reconstructed using deep-dwelling planktonic foraminifera that record subsurface conditions. Here we used six species (Neogloboquadrina dutertrei, Globorotalia tumida, Globorotalia inflata, Globorotalia truncatulinoides, Globorotalia hirsuta, and Globorotalia crassaformis) from 66 core tops along a meridional transect spanning the mid-Atlantic (42°N to 25°S) to develop a method for reconstructing past thermocline conditions. We estimated the calcification depths from d18O measurements and the Mg/Ca-temperature relationships for each species. This systematic strategy over this large latitudinal section reveals distinct populations with different Mg/Ca-temperature relationships for G. inflata, G. truncatulinoides, and G. hirsuta in different areas. The calcification depths do not differ among the different populations, except for G. hirsuta, where the northern population calcifies much shallower than the southern population. N. dutertrei and G. tumida show a remarkably constant calcification depth independent of oceanographic conditions. The deepest dweller, G. crassaformis, apparently calcifies in the oxygen-depleted zone, where it may find refuge from predators and abundant aggregated matter to feed on. We found a good match between its calcification depth and the 3.2 ml/l oxygen level. The results of this multispecies, multiproxy study can now be applied down-core to facilitate the reconstruction of open-ocean thermocline changes in the past.
Resumo:
The geochemistry of basalts recovered from seven sites in the North Atlantic is described with particular reference to minor elements. Three sites (407, 408, and 409) along the same mantle flow line, transverse to the Reykjanes Ridge at about 63°N, provide information on the composition of basalts erupted over a 34-m.y. interval between 2.3 and 36 m.y. ago. At Site 410, at 45°N, penetration into 10 m.y.-old crust west of the ridge axis permits comparisons with young basalts dredged from the median valley at 45°N. Three sites in the FAMOUS area at about 36°N provided material from very young (1 m.y.) basaltic crust (Site 411), and material to test the geochemical coherence of basalts of different ages (1.5 and 3.5 m.y.) on either side of a fracture zone (Sites 412 and 413). These sites complement earlier data from dredged and drilled sites (Leg 37) in the FAMOUS area. At Site 407, four geochemically distinct basalt units occur, with different normative and rare-earth element (REE) characteristics, and there is a clear correlation with magnetic stratigraphy. Yet there is a remarkable consistency in incompatible element ratios between these units, indicating derivation from an essentially similar mantle source. The basalts from the younger sites, 408 and 409, show a similar range of normative and REE variation, but incompatible element ratios are identical to those at Site 407, indicating that basalts at all three sites were produced from a mantle source which was geochemically relatively uniform. Rare-earth differences between the basalts can be interpreted in terms of variations in the degree and depth of partial melting causing HREE (+Y) retention in the source, although there may be some inter-site differences with respect to REE. A similar picture is presented at 45°N. Apparently a range of tholeiitic, transitional, and alkalic basalts were being erupted 10 m.y. ago, which have almost identical geochemical characteristics to those recently erupted in the median valley at 45°N. Incompatible element ratios are markedly different from those recorded at the Reykjanes Ridge. Basalts recovered from the FAMOUS sites are geochemically similar to previous samples recovered from the FAMOUS area, and their incompatible element ratios are similar, but not identical, to those at 45°N. However, total trace element levels are consistently lower than in 45°N basalts, which might imply smaller degrees of partial melting and/or greater depths of magma generation at 45°N, or higher trace element levels in the mantle source at 45°N. Few of the basalts recovered on Leg 49 have the geochemical characteristics of typical "MORB" (e.g., Nazca Plate, Leg 34). The data strongly support models invoking geochemical inhomogeneity in the source regions of basalts produced at the Mid-Atlantic Ridge. However, the data also introduce an additional time factor into such models and demonstrate the uniformity of the mantle source at a particular ridge sector (over periods in excess of 30 m.y.), while emphasizing the marked differences along the ridge. Mixing models invoking "depleted" and "enriched" mantle sources would seem to be inadequate to account for the observed variations.
Stable carbon and oxygen isotope ratios of benthic and planktic foraminifera from the Atlantic Ocean
Resumo:
Benthonic foraminifera in late Pleistocene deep-sea cores show significant variation in delta 13C with depth in sediment. This, and the report by Sommer et al., (in prep) of delta 13C variations in planktonic foraminifera, indicate that the delta13C in dissolved oceanic CO2 undergoes a significant change in a few thousand years. This is in apparent contradiction to the estimated 300 ka residence time for carbon in the ocean. It is suggested that this is a consequence of changes in the terrestrial plant biomass, which has a delta13C of about -25?. Postulated changes in world vegetation, particularly in tropical rainforests during the Late Pleistocene, were sufficient to produce change of the magnitude observed. Rapid expansions of forests between 13 ka and 8 ka ago may have resulted in the striking accumulation of aragonite pteropods in Atlantic Ocean sediments of the age. Rapid deforestation during an interglacial-glacial transition probably caused the intense carbonate dissolution which is observed in Equatorial Pacific Ocean sediments deposited over this interbal. The current rate of injection of fossil fuel CO2 into the atmosphere is substantially greater than the rate at which it was added during post-interglacial aridification in the tropics.
Resumo:
The flux of materials to the deep sea is dominated by larger, organic-rich particles with sinking rates varying between a few meters and several hundred meters per day. Mineral ballast may regulate the transfer of organic matter and other components by determining the sinking rates, e.g. via particle density. We calculated particle sinking rates from mass flux patterns and alkenone measurements applying the results of sediment trap experiments from the Atlantic Ocean. We have indication for higher particle sinking rates in carbonate-dominated production systems when considering both regional and seasonal data. During a summer coccolithophorid bloom in the Cape Blanc coastal upwelling off Mauritania, particle sinking rates reached almost 570 m per day, most probably due the fast sedimentation of densely packed zooplankton fecal pellets, which transport high amounts of organic carbon associated with coccoliths to the deep ocean despite rather low production. During the recurring winter-spring blooms off NW Africa and in opal-rich production systems of the Southern Ocean, sinking rates of larger particles, most probably diatom aggregates, showed a tendency to lower values. However, there is no straightforward relationship between carbonate content and particle sinking rates. This could be due to the unknown composition of carbonate and/or the influence of particle size and shape on sinking rates. It also remains noticeable that the highest sinking rates occurred in dust-rich ocean regions off NW Africa, but this issue deserves further detailed field and laboratory investigations. We obtained increasing sinking rates with depth. By using a seven-compartment biogeochemical model, it was shown that the deep ocean organic carbon flux at a mesotrophic sediment trap site off Cape Blanc can be captured fairly well using seasonal variable particle sinking rates. Our model provides a total organic carbon flux of 0.29 Tg per year down to 3000 m off the NW African upwelling region between 5 and 35° N. Simple parameterisations of remineralisation and sinking rates in such models, however, limit their capability in reproducing the flux variation in the water column.