777 resultados para Basalt


Relevância:

10.00% 10.00%

Publicador:

Resumo:

DSDP Hole 504B was drilled into 6 Ma crust, about 200 km south of the Costa Rica Rift, Galapagos Spreading Center, penetrating 1.35 km into a section that can be divided into four zones-Zone I: oxic submarine weathering; Zone II: anoxic alteration; Zones III and IV: hydrothermal alteration to greenschist facies. In Zone III there is intense veining of pillow basalts. Zone IV consists of altered sheeted dikes. Isotopic geochemical signatures in relation to the alteration zones are recorded in Hole 504B, as follows: Zone Depth(m) Average87Sr/86Sr Average delta18O (?) Average deltaD (?) I 275-550 0.7032 7.3 -63 II 550-890 0.7029 6.5 -45 III 890-1050 0.7035 5.6 -31 IV 1050-1350 0.7032 5.5 -36 Alteration temperatures are as low as 10°C in Zones I and II based on oxygen isotope fractionation. Strontium isotopic data indicate that a circulation of seawater is much more restricted in Zone II than in Zone I. Fluid inclusion measurements of vein quartz indicate the alteration temperature was mainly 300 +/- 20°C in Zones III and IV, which is consistent with secondary mineral assemblages. The strontium, oxygen, and hydrogen isotopic compositions of hydrothermal fluids which were responsible for the greenschist facies alteration in Zones III and IV are estimated to be 0.7037, 2?, and 3?, respectively. Strontium and oxygen isotope data indicate that completely altered portions of greenstones and vein minerals were in equilibrium with modified seawater under low water/rock ratios (in weight) of about 1.6. This value is close to that of the end-member hydrothermal fluids issuing at 21°N EPR. Basement rocks are not completely hydrothermally altered. About 32% of the greenstones in Zones III and IV have escaped alteration. Thus 1 g of fresh basalt including the 32% unaltered portion are required in order to make 1 g of end-member solution from fresh seawater in water-rock reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SeaBeam echo sounding, seismic reflection, magnetics, and gravity profiles were run along closely spaced tracks (5 km) parallel to the Atlantis II Fracture Zone on the Southwest Indian Ridge, giving 80% bathymetric coverage of a 30- * 170-nmi strip centered over the fracture zone. The southern and northern rift valleys of the ridge were clearly defined and offset north-south by 199 km. The rift valleys are typical of those found elsewhere on the Southwest Indian Ridge, with relief of more than 2200 m and widths from 22 to 38 km. The ridge-transform intersections are marked by deep nodal basins lying on the transform side of the neovolcanic zone that defines the present-day spreading axis. The walls of the transform generally are steep (25°-40°), although locally, they can be more subdued. The deepest point in the transform is 6480 m in the southern nodal basin, and the shallowest is an uplifted wave-cut terrace that exposes plutonic rocks from the deepest layer of the ocean crust at 700 m. The transform valley is bisected by a 1.5-km-high median tectonic ridge that extends from the northern ridge-transform intersection to the midpoint of the active transform. The seismic survey showed that the floor of the transform contains up to 0.5 km of sediment. Piston-coring at two locations on the transform floor recovered more than 1 m of sand and gravel, which appears to be turbidites shed from the walls of the fracture zone. Extensive dredging showed that more than two-thirds of the crust exposed in the transform valley and its walls were plutonic rocks, principally gabbros and residual mantle peridotites. In contrast, based on dredging and seafloor morphology, only relatively undisrupted pillow basalt flows have been exposed on crust of the same age spreading away from the transform. Magnetic anomalies are well defined out to 11 m.y. over the flanking transverse ridges and transform valley, even where layer 2 appears to be absent. The total opening rate is 1.6 cm/yr, but the arrangement of the anomalies indicates that the spreading for each ridge is asymmetric, with the ridge flanks facing the transform spreading at a rate of 1.0 cm/yr. Such an asymmetric spreading pattern requires that both the northern and southern ridges migrate away from each other at 0.2 cm/yr, thus lengthening the transform at 0.4 cm/yr for the last 11 m.y. To the north, the fracture zone valley is oriented differently from the present-day transform, indicating a paleospreading direction change at 17 m.y. from N10°E to due north-south. This change placed the transform into extension for the 11-m.y. period required for simple orthogonal ridge-transform geometry to be reestablished and produced a large transtensional basin within the transform valley. This basin was split by continued transform slip after 11 m.y., with the larger half moving to the north with the African Plate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the magnetic and paleomagnetic properties of 77 basalt samples from Holes 482, 482C, 482D, 483, 483B, 485, and 485A in order to study the structure and development of the ocean's crust. During the course of this study, we measured the natural remanent magnetization, Jn, and its stability in an alternating magnetic field; the magnetic susceptibility, x; the saturation magnetization, Js; the saturation remanent magnetization, Jrs; the coercivity of maximum remanence, HCR; and the median destructive fields MDFn (for Jn) and MDFs for Jrs. A thermomagnetic analysis for Js and Jrs was also performed; these latter measurements were made on the same samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petrologic studies of mid-ocean ridge basalt (MORB) (e.g., Melson et al., 1975; Flower, et al., 1977; Byerly and Wright, 1978; Melson, 1979; Byerly and Sinton, 1980; Thompson, 1980) show that magmatic liquid-fraction trends are indicated by the compositions of fresh glass selvedges, usually, but not always, associated with pillow basalts. In contrast, whole-rock compositional variation will often reflect the complicating effects of syn- and post-eruptive phenocryst accumulation. Additional variation may be introduced by the reaction of basalts with seawater. While comparatively severe alteration of variable type was noted locally in the young basalts recovered across the mouth of the Gulf of California on Leg 65, most of the basalts were extremely fresh, making them ideal for studies of compositional variation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this manuscript, we present the results of a physical properties investigation carried out on basaltic cores recovered from the four Leg 192 basement sites, focusing on the relationship between physical properties and alteration in basalts. Variations in physical properties in the Leg 192 basement sites closely resemble each other and reflect the amount of alteration and vein formation in the basement basalts. P-wave velocities, magnetic susceptibilities, and densities for the dense massive basalts are higher than those of more altered and heavily veined basalts. Porosity-dependent alteration is observed at Leg 192 basement sites: P-wave velocity displays a general decrease with increasing loss on ignition and potassium content. These trends are consistent with trends documented for typical alteration of oceanic crust and suggest that basalt alteration is largely responsible for the variation of the physical properties exhibited by rocks at Leg 192 basement sites. Our physical property data support the conclusion that only low-temperature seawater-mediated alteration occurred in the lava flows of the Ontong Java Plateau (OJP). This lack of higher-temperature hydrothermal alteration is consistent with the idea that the OJP basement sites are far from their eruptive vents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two sites were drilled in the Celebes Sea as part of Ocean Drilling Program Leg 124; Site 767 and Site 770. Radiolarians are preserved in Paleogene pelagic claystones with minor occurrences in certain Neogene successions. The brown clays that immediately overlie basalt at both sites contain radiolarians of the late middle Eocene Podocyrtis chalara Zone. Late Eocene radiolarians are not found, due to dissolution and probable hiatus. The Oligocene is represented by the Theocyrtis tuberosa and Dorcadospyris ateuchus Zones. Oligocene sediments are strongly dominated by abundant and diverse radiolarians of the TristylospyrislDorcadospyris lineage. Preservation of Paleogene radiolarian assemblages ranges from good to very poor. Late Miocene radiolarians of the Didymocyrtis antepenultima Zone are found only in Site 770. Other Neogene sediments are barren of radiolarian remains, with the exception of latest Pleistocene and Holocene sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of water saturation and open pore space on the seismic velocities of crystalline rocks are extremely important when comparing laboratory data to in situ geophysical observations (e.g., Dortman and Magid, 1969; Nur and Simmons, 1969; Christensen and Salisbury, 1975). The existence of fractured rocks, flow breccias and drained pillows in oceanic crustal layer 2a, for instance, may appreciably reduce seismic velocities in that layer (Hyndman, 1976). Laboratory data assessing the influence of porosity and water saturation on seismic velocities of oceanic crustal rocks would certainly aid interpretation of marine geophysical data. Igneous rocks recovered during Leg 58 of the Deep Sea Drilling Project, in the Shikoku Basin and Daito Basin in the North Philippine Sea, are extremely vesicular, as evidenced by shipboard measurements of porosities, which range from 0 to 30 per cent (see reports on Sites 442, 443, 444, and 446, this volume). Samples with this range of porosities afford an excellent opportunity to examine the influence of porosity and water saturation on seismic velocities of oceanic basalts. This paper presents compressional-wave velocities to confining pressures of 1.5 kbars for water-saturated and air-dried basalt samples from the North Philippine Sea. Samples used in this study are from sites 442, 443 and 444 in the Shikoku Basin and Site 446 in the Daito Basin. Excellent negative correlation between porosity and compressional-wave velocity demonstrates that waterfilled pore space can significantly reduce compressionalwave velocities in porous basalts. Velocities measured in air-dried samples indicate that the velocity difference between dry samples and saturated samples is small for porosities exceeding 10 per cent, and very large for lower porosities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basement rocks from the Ontong Java Plateau are tholeiitic basalts that appear to record very high degrees of partial melting, much like those found today in the vicinity of Iceland. They display a limited range of incompatible element and isotopic variation, but small differences are apparent between sampled sites and between upper and lower groups of flows at Ocean Drilling Program Site 807.40Ar-39Ar ages of lavas from Site 807 and Deep Sea Drilling Project Site 289 are indistinguishable about an early Aptian mean of 122 Ma (as are preliminary data for the island of Malaita at the southern edge of the plateau), indicating that plateau-building eruptions ended more or less simultaneously at widely separated locations. Pb-Nd-Sr isotopes for lavas from Sites 289, 803, and 807, as well as southern Malaita, reflect a hotspot-like source with epsilon-Nd(T) = +4.0 to +6.3, (87Sr/86Sr)T = 0.70423-0.70339, and 206Pb/204Pb = 18.245-18.709 and possessing consistently greater 208Pb/204Pb for a given 206Pb/204Pb than Pacific MORB. The combination of hotspot-like mantle source, very high degrees of melting, and lack of a discernible age progression is best explained if the bulk of the plateau was constructed rapidly above a surfacing plume head, possibly that of the Louisville hotspot. Basalt and feldspar separates indicate a substantially younger age of ~90 Ma for basement at Site 803; in addition, volcaniclastic layers of mid-Cenomanian through Coniacian age occur at DSDP Site 288, and beds of late Aptian-Albian age are found at Site 289. Therefore, at least some volcanism continued on the plateau for 30 m.y. or more. The basalts at Site 803 are chemically and isotopically very similar to those at the ~122 Ma sites, suggesting that hot plume-type mantle was present beneath the plateau for an extended period or at two different times. Surviving seamounts of the Louisville Ridge formed between 70 and 0 Ma have much higher 206Pb/204Pb than any of the plateau basalts. Thus, assuming the Louisville hotspot was the source of the plateau lavas, a change in the hotspot's isotopic composition may have occurred between roughly 70 and 90 Ma; such a change may have accompanied the plume-head to plume-tail transition. Similar shifts from early, lower 206Pb/204Pb to subsequently higher 206Pb/204Pb values are found in several other oceanic plateau-hotspot and continental flood basalt-hotspot systems, and could reflect either a reduction in the supply of low 206Pb/204Pb mantle or an inability of some off-ridge plume-tails to melt refractory low 206Pb/204Pb material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basal dolomitic sediments were recovered at three drill sites in the Tyrrhenian Sea during Ocean Drilling Program (ODP) Leg 107 (Sites 650, 651, and 655). These sediments overlie the basaltic basement complex and are enriched in iron, and in some instances, also in manganese. The manganese enrichments, together with a very slight enrichment in trace transition elements, strongly suggest that the basal sediments have an affinity to deep-sea metalliferous deposits of hydrothermal origin. At Sites 651 and 655, the dolostones contain variable amounts of authigenic palygorskite, a Mgrich clay mineral. At Site 651, the basal sediments are 40 m thick and contain nonstoichiometric dolomite, sometimes Ca rich, but primarily Mg rich. The occurrence of Mg-rich dolomite with excess Mg up to 4% is unusual for the deep-sea environment; it may be associated with a hydrothermally driven flux of altered sea water through the directly underlying basement complex, which comprises basalt, dolerite, and serpentinized peridotite. Low-temperature alteration of the basement complex could produce solutions enriched in Mg. Oxygen-isotope equilibrium temperatures indicate that all of the studied dolomites formed under low-temperature conditions (i.e., < 70?C). The carbon-isotope compositions, together with the strong isotopic covariance, suggest that the Mg-rich dolomite precipitated more rapidly than the Carich dolomite. We suggest that the low-temperature, hydrothermal convection of Mg-rich solutions through the basal sediments in this back-arc basin environment (1) overcame kinetic problems related to the formation of massive dolostones, and (2) provided a mass-transport mechanism for dolomitization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basalts recovered from Sites 595 and 596 on Mesozoic crust in the southwest Pacific range from olivine-bearing tholeiites to ferrobasalts. Despite having undergone extensive low-grade alteration, which has raised K and Rb abundances, the basalts have consistent interelement ratios of Ti, Zr, Hf, rare-earth elements, Y, Th, Ik, and Nb. La/Ta (-18), Lan/Ybn (0.6), Ti/Zr (115), Zr/Nb (20), and Th/Hf (0.08) ratios all fall within the range of N-type mid-ocean-ridge basalt. The basalts from Sites 595 and 596 indicate that the Mesozoic Pacific crust was derived from a mantle source by processes similar to those operating at the present-day East Pacific Rise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Siliceous deposits drilled on Ocean Drilling Program Leg 129 accumulated within a few degrees of the equator during the Jurassic through early Tertiary, as constrained by paleomagnetic data. During the Jurassic and Early Cretaceous, radiolarian ooze, mixed with a minor amount of pelagic clay, was deposited near the equator, and overall accumulation rates were moderate to low. At a smaller scale, in more detail, periods of relatively higher accumulation rates alternated with periods of very low accumulation rates. Higher rates are represented by radiolarite and limestone; lower rates are represented by radiolarian claystone. Our limited data from Leg 129 suggests that accumulation of biogenic deposits was not symmetrical about the equator or consistent over time. In the Jurassic, sedimentation was siliceous; in the Cretaceous there was significant calcareous deposition; in the Tertiary claystone indicates significantly lower accumulation rates at least the northern part of the equatorial zone. Accumulation rates for Leg 129 deposits in the Cretaceous were higher in the southern part of the equatorial zone than in the northern part, and the southern side of this high productivity zone extended to approximately 15°S, while the northern side extended only to about 5°N. Accumulation rates are influenced by relative contributions from various sediment sources. Several elements and element ratios are useful for discriminating sedimentary sources for the equatorial depositional environments. Silica partitioning calculations indicate that silica is dominantly of biogenic origin, with a detrital component in the volcaniclastic turbidite units, and a small hydrothermal component in the basal sediments on spreading ridge basement of Jurassic age at Site 801. Iron in Leg 129 sediments is dominantly of detrital origin, highest in the volcaniclastic units, with a minor hydrothermal component in the basal sediments at Site 801. Manganese concentrations are highest in the units with the lowest accumulation rates. Fe/Mn ratios are >3 in all units, indicating negligible hydrothermal influence. Magnesium and aluminum concentrations are highest in the volcaniclastic units and in the basal sediments at Site 801. Phosphorous is very low in abundance and may be detrital, derived from fish parts. Boron is virtually absent, as is typical of deep-water deposits. Rare earth element concentrations are slightly higher in the volcaniclastic deposits, suggesting a detrital source, and lower in the rest of the lithologic units. Rare earth element abundances are also low relative to "average shale." Rare earth element patterns indicate all samples are light rare earth element enriched. Siliceous deposits in the volcaniclastic units have patterns which lack a cerium anomaly, suggesting some input of rare earth elements from a detrital source; most other units have a distinct negative Ce anomaly similar to seawater, suggesting a seawater source, through adsorption either onto biogenic tests or incorporation into authigenic minerals for Ce in these units. The Al/(Al + Fe + Mn) ratio indicates that there is some detrital component in all the units sampled. This ratio plotted against Fe/Ti shows that all samples plot near the detrital and basalt end-members, except for the basal samples from Site 801, which show a clear trend toward the hydrothermal end-member. The results of these plots and the association of high Fe with high Mg and Al indicate the detrital component is dominantly volcaniclastic, but the presence of potassium in some samples suggests some terrigenous material may also be present, most likely in the form of eolian clay. On Al-Fe-Mn ternary plots, samples from all three sites show a trend from biogenic ooze at the top of the section downhole to oceanic basalt. On Si-Fe-Mn ternary plots, the samples from all three sites fall on a trend between equatorial mid-ocean spreading ridges and north Pacific red clay. Copper-barium ratios show units that have low accumulation rates plot in the authigenic field, and radiolarite and limestone samples that have high accumulation rates fall in the biogenic field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microbial population in samples of basalt drilled from the north of the Australian Antarctic Discordance (AAD) during Ocean Drilling Program Leg 187 were studied using deoxyribonucleic acid (DNA)-based methods and culturing techniques. The results showed the presence of a microbial population characteristic for the basalt environment. DNA sequence analysis revealed that microbes grouping within the Actinobacteria, green nonsulfur bacteria, the Cytophaga/Flavobacterium/Bacteroides (CFB) group, the Bacillus/Clostridium group, and the beta and gamma subclasses of the Proteobacteria were present in the basalt samples collected. The most dominant phylogenetic group, both in terms of the number of sequences retrieved and the intensities of the DNA bands obtained with the denaturing gradient gel electrophoresis analysis, was the gamma Proteobacteria. Enrichment cultures showed phylogenetic affiliation with the Actinobacteria, the CFB group, the Bacillus/Clostridium group, and the alpha, beta, gamma, and epsilon subclasses of the Proteobacteria. Comparison of native and enriched samples showed that few of the microbes found in native basalt samples grew in the enrichment cultures. Only seven clusters, two clusters within each of the CFB and Bacillus/Clostridium groups and five clusters within the gamma Proteobacteria, contained sequences from both native and enriched basalt samples with significant similarity. Results from cultivation experiments showed the presence of the physiological groups of iron reducers and methane producers. The presence of the iron/manganese-reducing bacterium Shewanella was confirmed with DNA analysis. The results indicate that iron reducers and lithotrophic methanogenic Archaea are indigenous to the ocean crust basalt and that the methanogenic Archaea may be important primary producers in this basaltic environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ~46-m.y.-old igneous basement cored during Leg 200 in the North Pacific represents one of the few cross sections of Pacific oceanic crust with a total penetration into basalt of >100 m. The rocks, emplaced during the Eocene at a fast-spreading rate (~14 cm/yr; full rate) are strongly differentiated tholeiitic basalts (ferrobasalts) with 7-4.5 wt% MgO, relatively high TiO2 (2-3.5 wt%), and total iron as Fe2O3 (9.1-16.8 wt%). The differentiated character of these lavas is related to unusually large amounts of crystallization differentiation of plagioclase, clinopyroxene, and olivine. The lithostratigraphy of the basement (cored to ~170 meters below seafloor) is divided into three units. The deepest unit (lithologic Unit 3), is a succession of lava flows of no more that a few meters thickness each. The intermediate unit (lithologic Unit 2) is represented by intermixed thin flows and pillows, whereas the shallowest unit (lithologic Unit 1), comprises two massive flows. The rocks range from aphyric to sparsely clinopyroxene-plagioclase-phyric (phenocryst content = <3 vol%) and from holocrystalline to hypohyaline. Chilled margins of pillow fragments show holohyaline to sparsely vitrophyric textures. Site 1224 oxide minerals present a type of alteration not previously seen, where titanomagnetite is only partially destroyed and the pure magnetite component is partially removed from the mineral, leaving, in the most extreme case, a nearly pure ulvöspinel residuum. As a result of this dissolution, iron, mainly in the oxidized state, is added to the circulating solvent fluids. This means that a considerable metal source can result from low-temperature reactions throughout the upper ocean crust. The coarsest-grained lithologic Unit 1 rocks have interstitial myrmekitic intergrowths of quartz and sodic plagioclase (~An12), roughly similar in mineralogy and bulk composition to tonalite/trondhjemite veinlets in abyssal gabbros from the southwest Indian Ocean and Hess Deep, eastern equatorial Pacific. Based on idiomorphic relationships and projections into the simplified Q-Ab-Or-H2O granite ternary system, the myrmekitic intergrowths formed at the same time as, or just after, the oxide minerals coprecipitated and at low water vapor pressure (~0.5 kbar). Their compositions correspond to SiO2-oligoclase intergrowths that are considerably less potassic than dacitic glasses that erupt, although rarely, along the East Pacific Rise or that have been produced experimentally by partial melting of gabbro. Based on the crystallization history and comparison to experimental data, the original interstitial siliceous liquids resulted from late-stage immiscible separation of siliceous and iron-rich liquids. The rare andesitic lavas found along the East Pacific Rise may be hybrid rocks formed by mixing of these immiscible siliceous melts with basaltic magma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geochemical (atomic absorption, neutron activation analyses), mineralogical (microprobe), and radiometric (40K - 40Ar) data are presented for five basalts from the Guatemala Trench area (Deep Sea Drilling Project, Leg 84). Strong geochemical and mineralogical differences distinguish two types among these basalts: (1) One basalt (Sample 567A-19,CC), recovered below Upper Cretaceous limestone has the following characteristics: it is quartz normative and has low TiO2, content, as well as low amounts of Cr, Ni and other transition metals, an LREE depleted pattern, and affinities of clinopyroxene phenocryst plotted into the field of tholeiitic and calc-alkalic pyroxenes. (2) Four alkaline basalts, recovered from the mafic and ultramafic acoustic basement, are nepheline normative and show high TiO2 content, high amounts of Cr, Ni and so on, an LREE enriched pattern and compositions of clinopyroxene phenocryst plotted close to or within the field of alkali basalt pyroxenes. These basalts are comparable to those recognized in the lower part of the Santa Elena complex and are clearly different from the oceanic basalts of the Cocos Plate. The radiometric age of the orogenic basalt seems to be close to 80 Ma. The alkaline basalts are clearly older, even if a discrepancy appears between the results of different analyses because of the secondary effects of alteration.