64 resultados para drillhole
Resumo:
In the northern McMurdo Sound (Ross Sea, Antarctica), the CRP-2/2A drillhole targeted the western margin of the Victoria Land Basin to investigate Neogene to Palaeogene climatic and tectonic history by obtaining continuous core and downhole logs. Well logging of CRP-2/2A has provided a complete and comprehensive dataset of in situ geophysical measurements. This paper describes the evaluation and interpretation of the downhole logging data using multivariate statistical methods. Two major types of multivariate statistical methods were each yielding a different perspective: (1) Factor analysis was used as an objective tool for classification of the drilled sequence based on physical and chemical properties. The factor logs are mirroring the basic geological controls (i.e., grain size, porosity, clay mineralogy) behind the measured geophysical properties, thereby making them easier to interpret geologically. (2) Cluster analysis of the logs groups similar downhole geophysical properties into one cluster, delineating individual logging or sedimentological units. These objectively and independently defined units, or statistical electrofacies, are helpful in differentiating lithological and sedimentological characterisations (e.g. grain size, provenance). The multivariate statistical methods of factor and cluster analysis proved to be powerful tools for fast, reliable, and objective characterisation of downhole geophysical properties at CRP-2/2A, resulting in interpretations which are consistent with sedimentological findings.
Resumo:
The CIROS-1 drillhole, which in 1986 reached a depth of 700 m below the seafloor, is still the only deep hole that can provide information on the velocity structure of the upper crust in McMurdo Sound and the Ross Sea, Antarctica. A careful review and quality control of the downhole logging data of CIROS-1 resulted in a new porosity depth function that is consistent with porosity data from the MSSTS-1 and CRP-1 drillholes. Using existing porosity-velocity equations, it was possible for the first time to obtain reliable velocity information for the upper 700 m of strata off the Victoria Land coast. The calculated synthetic seismograms, based on downhole velocity and density data, fit very well with the existing seismic lines IT90A-71, PD90-12, and NBP9601-89. The quality of the correlation confirms that the average velocity of the top 700 m of strata is about 2 000-2 300 m/s, and not 2 800-3 000 m/s, as was previously assumed. In consequence, these distinctly lower velocities result in shallower depths for the seismic unconformities V3/V4 andV4/V5 and thus may have important implications for further drilling off Cape Roberts.
Resumo:
Nineteen samples of the Cape Roberts-1 drillcore were taken from Miocene- age deposits, from 90.25 - 146.50 metres below seafloor (mbsf) for thin section and laser grain-size analysis. Using the grain-size distribution, detailed core logging, X-radiography and thin-section analysis of microstructures, coupled with a statistical grouping of the grain-size data, three main styles of gravity-flow sedimentation were revealed. Thin (centimetre-scale) muddy debris-flow deposits are the most common and are possibly tirggered by debris rain-out from sea-ice These deposits are characterised by very poorly sorted, faintly laminated muddy sandstones with coarse granules toward their base. Contacts are gradational to sharp. Variations on this style of mass-wasting deposit are rhythmically stacked sequences of pebbly-coarse sandstones representing successive thin debris-flow events. These suggest very high sedimentation rates on an unstable slope in a shallow-water proximal glacimarine environment. Sandy-silty turbidites appear more common in the lower sections of the core, below approximately 141.00 mbsf, although they occur occasionally with the debris flow deposits The turbidites are characterised by inversely to normally graded, well-laminated siltstones with occasional lonestones, and represent a more distal shallow-water glacimarine environment.
Resumo:
Lonestone abundances in CRP-1 were investigated using three methods: core examination at Cape Roberts Camp, analysis of digital core images and follow-up core examination. For all images of split-core, we determined size and depth of every detectable lonestone larger than 3 mm. Lonestone abundance decreases exponentially with clast size. Although no significant depth-dependent variations in lonestone size distribution were detected, a strong 0.5-0.7 m abundance periodicity, of unknown origin, is evident within diamicts. Lonestone volume percentage was estimated from size distribution: most size classes contribute approximately the same volume to the total. Sizes >16 mm have rare enough lonestones that their counts are nonrepresentative when based on short intervals of split core. This problem does not affect total counts significantly, but the volume analysis needs to be confined to <= 6 mm lonestones to avoid instability induced by rare and nonrepresentative larger lonestones. If lonestone abundance can be used as an indicator of glacial proximity, then our CRP-1 lonestone abundance logs confirm the overall character of previously inferred variations in relative distance to the ice margin. Large-scale changes in lonestone abundance also reflect the CRP-1 sequence stratigraphy, with individual sequences generally characterised by basal lonestone-rich diamict overlain by lonestone-poor sands and muds. The relationship between glacial proximity and lonestone abundance within diamicts and within sand-mud intervals is, however, less certain. For example, two or three gradual lonestone increases may indicate regressions during glacial advances, in contrast to the more common CRP-l pattern of dominantly transgressive sequences.
Resumo:
Petrographical and mineral chemistry data are described for the mist representative basement lithologies occurring as clasts (pebble grain-size class) from the CRP-1 drillhole. Most pebbles consits of either undeformed or foliated biotite with or without hornblende monzogranites. Other rock types include biotite with or without garnet syenogranitr, biotite-hornblende granodiorite, tonalite, monzogranitic porphyries, haplogranite, quartz-monzonite (restricted to the Quaternary section), Ca-silicate rocks and biotite amphibolite (restricted to the Miocene strata). The common and ubiquitous occurence of biotite with or without hornblende monzogranite pebbles, in both the Quaternary and Miocene sections, apparently mirrors the dominance of these rock types in the granitoid assemblages which are presently exposed in the upper Precambrian-lower Paleozoic basement of the south Victoria Land. The other CRP-1 pebble lithologies show petrographical features which consitently support a dominant supply from areas of the Transantarctic Mountains located to the west and south-west of the CRP-1 site, and they thus furthercorroborate a model of local provenance for the supply of basement clasts to the CRP-1 sedimentary strata.