97 resultados para Water treatment plants


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pteropods are planktonic mollusks that play an important role in the food web of various ecosystems, particularly at high latitudes. Because they produce an aragonitic shell, pteropods are expected to be very sensitive to ocean acidification driven by anthropogenic CO2 emissions. The effect of ocean acidification was investigated using juveniles of the Arctic pteropod Limacina helicina from the Canada Basin of the Arctic Ocean. The animals were maintained in 3 controlled pH conditions (total scale pH [pHT] = 8.05, 7.90 or 7.75) for 8 d, and their mortality and the linear extension of their shell were monitored. The pH did not impact the mortality rate, but the linear extension of the shell decreased as a function of declining pH. Surprisingly, the pteropods were still able to extend their shell at an aragonite saturation state as low as 0.6. Nevertheless, dissolution marks were visible on the whole shell, indicating that calcium carbonate dissolution had also occurred, casting doubts on the ability of the pteropods to maintain a positive balance between precipitation and dissolution of calcium carbonate under corrosive conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coralline algae are susceptible to the changes in the seawater carbonate system associated with ocean acidification (OA). However, the coastal environments in which corallines grow are subject to large daily pH fluctuations which may affect their responses to OA. Here, we followed the growth and development of the juvenile coralline alga Arthrocardia corymbosa, which had recruited into experimental conditions during a prior experiment, using a novel OA laboratory culture system to simulate the pH fluctuations observed within a kelp forest. Microscopic life history stages are considered more susceptible to environmental stress than adult stages; we compared the responses of newly recruited A. corymbosa to static and fluctuating seawater pH with those of their field-collected parents. Recruits were cultivated for 16 weeks under static pH 8.05 and 7.65, representing ambient and 4*preindustrial pCO2 concentrations, respectively, and two fluctuating pH treatments of daily (daytime pH = 8.45, night-time pH = 7.65) and daily (daytime pH = 8.05, night-time pH = 7.25). Positive growth rates of new recruits were recorded in all treatments, and were highest under static pH 8.05 and lowest under fluctuating pH 7.65. This pattern was similar to the adults' response, except that adults had zero growth under fluctuating pH 7.65. The % dry weight of MgCO3 in calcite of the juveniles was reduced from 10% at pH 8.05 to 8% at pH 7.65, but there was no effect of pH fluctuation. A wide range of fleshy macroalgae and at least 6 species of benthic diatoms recruited across all experimental treatments, from cryptic spores associated with the adult A. corymbosa. There was no effect of experimental treatment on the growth of the benthic diatoms. On the community level, pH-sensitive species may survive lower pH in the presence of diatoms and fleshy macroalgae, whose high metabolic activity may raise the pH of the local microhabitat.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sodium hypochlorite (NaOCl) is widely used to disinfect seawater in power plant cooling systems in order to reduce biofouling, and in ballast water treatment systems to prevent transport of exotic marine species. While the toxicity of NaOCl is expected to increase by ongoing ocean acidification, and many experimental studies have shown how algal calcification, photosynthesis and growth respond to ocean acidification, no studies have investigated the relationship between NaOCl toxicity and increased CO2. Therefore, we investigated whether the impacts of NaOCl on survival, chlorophyll a (Chl-a), and effective quantum yield in three marine phytoplankton belonging to different taxonomic classes are increased under high CO2 levels. Our results show that all biological parameters of the three species decreased under increasing NaOCl concentration, but increasing CO2 concentration alone (from 450 to 715 µatm) had no effect on any of these parameters in the organisms. However, due to the synergistic effects between NaOCl and CO2, the survival and Chl-a content in two of the species, Thalassiosira eccentrica and Heterosigma akashiwo, were significantly reduced under high CO2 when NaOCl was also elevated. The results show that combined exposure to high CO2 and NaOCl results in increasing toxicity of NaOCl in some marine phytoplankton. Consequently, greater caution with use of NaOCl will be required, as its use is widespread in coastal waters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increasing pCO2 (partial pressure of CO2 ) in an "acidified" ocean will affect phytoplankton community structure, but manipulation experiments with assemblages briefly acclimated to simulated future conditions may not accurately predict the long-term evolutionary shifts that could affect inter-specific competitive success. We assessed community structure changes in a natural mixed dinoflagellate bloom incubated at three pCO2 levels (230, 433, and 765 ppm) in a short-term experiment (2 weeks). The four dominant species were then isolated from each treatment into clonal cultures, and maintained at all three pCO2 levels for approximately 1 year. Periodically (4, 8, and 12 months), these pCO2 -conditioned clones were recombined into artificial communities, and allowed to compete at their conditioning pCO2 level or at higher and lower levels. The dominant species in these artificial communities of CO2 -conditioned clones differed from those in the original short-term experiment, but individual species relative abundance trends across pCO2 treatments were often similar. Specific growth rates showed no strong evidence for fitness increases attributable to conditioning pCO2 level. Although pCO2 significantly structured our experimental communities, conditioning time and biotic interactions like mixotrophy also had major roles in determining competitive outcomes. New methods of carrying out extended mixed species experiments are needed to accurately predict future long-term phytoplankton community responses to changing pCO2 .

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hatching process of the Pacific abalone Haliotis discus hannai was prolonged at a pH of 7.6 and pH 7.3, and the embryonic developmental success was reduced. The hatching rate at pH 7.3 was significantly (10.8%) lower than that of the control (pH 8.2). The malformation rates at pH 7.9 and pH 8.2 were less than 20% but were 53.8% and 77.3% at pH 7.6 and pH 7.3, respectively. When newly hatched larvae were incubated for 48 h at pH 7.3, only 2.7% of the larvae settled, while more than 70% of the larvae completed settlement in the other three pH treatments. However, most 24 h old larvae could complete metamorphosis in all four pH treatments. Overall, a 0.3-unit reduction in water pH will produce no negative effect on the early development of the Pacific abalone, but further reduction in pH to the values predicted for seawater by the end of this century will have strong detrimental effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Changes in the seawater carbonate chemistry (ocean acidification) from increasing atmospheric carbon dioxide (CO2 ) concentrations negatively affect many marine calcifying organisms, but may benefit primary producers under dissolved inorganic carbon (DIC) limitation. To improve predictions of the ecological effects of ocean acidification, the net gains and losses between the processes of photosynthesis and calcification need to be studied jointly on physiological and population levels. We studied productivity, respiration, and abundances of the symbiont-bearing foraminifer species Marginopora vertebralis on natural CO2 seeps in Papua New Guinea and conducted additional studies on production and calcification on the Great Barrier Reef (GBR) using artificially enhanced pCO2 . Net oxygen production increased up to 90% with increasing pCO2 ; temperature, light, and pH together explaining 61% of the variance in production. Production increased with increasing light and increasing pCO2 and declined at higher temperatures. Respiration was also significantly elevated (~25%), whereas calcification was reduced (16-39%) at low pH/high pCO2 compared to present-day conditions. In the field, M. vertebralis was absent at three CO2 seep sites at pHTotal levels below ~7.9 (pCO2 ~700 µatm), but it was found in densities of over 1000 m(-2) at all three control sites. The study showed that endosymbiotic algae in foraminifera benefit from increased DIC availability and may be naturally carbon limited. The observed reduction in calcification may have been caused either by increased energy demands for proton pumping (measured as elevated rates of respiration) or by stronger competition for DIC from the more productive symbionts. The net outcome of these two competing processes is that M. vertebralis cannot maintain populations under pCO2 exceeding 700 µatm, thus are likely to be extinct in the next century.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study investigated the effects of ocean acidification and temperature increase on Neogloboquadrina pachyderma (sinistral), the dominant planktonic foraminifer in the Arctic Ocean. Due to the naturally low concentration of [CO3] 2- in the Arctic, this foraminifer could be particularly sensitive to the forecast changes in seawater carbonate chemistry. To assess potential responses to ocean acidification and climate change, perturbation experiments were performed on juvenile and adult specimens by manipulating seawater to mimic the present-day carbon dioxide level and a future ocean acidification scenario (end of the century) under controlled (in situ) and elevated temperatures (1 and 4 °C, respectively). Foraminifera mortality was unaffected under all the different experiment treatments. Under low pH, N. pachyderma (s) shell net calcification rates decreased. This decrease was higher (30 %) in the juvenile specimens than decrease observed in the adults (21 %) ones. However, decrease in net calcification was moderated when both, pH decreased and temperature increased simultaneously. When only temperature increased, a net calcification rate for both life stages was not affected. These results show that forecast changes in seawater chemistry would impact calcite production in N. pachyderma (s), possibly leading to a reduction of calcite flux contribution and consequently a decrease in biologic pump efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of light and elevated pCO2 on the growth and photochemical efficiency of the critically endangered staghorn coral, Acropora cervicornis, were examined experimentally. Corals were subjected to high and low treatments of CO2 and light in a fully crossed design and monitored using 3D scanning and buoyant weight methodologies. Calcification rates, linear extension, as well as colony surface area and volume of A. cervicornis were highly dependent on light intensity. At pCO2 levels projected to occur by the end of the century from ocean acidification (OA), A. cervicornis exhibited depressed calcification, but no change in linear extension. Photochemical efficiency (F v /F m ) was higher at low light, but unaffected by CO2. Amelioration of OA-depressed calcification under high-light treatments was not observed, and we suggest that the high-light intensity necessary to reach saturation of photosynthesis and calcification in A. cervicornis may limit the effectiveness of this potentially protective mechanism in this species. High CO2 causes depressed skeletal density, but not linear extension, illustrating that the measurement of extension by itself is inadequate to detect CO2 impacts. The skeletal integrity of A. cervicornis will be impaired by OA, which may further reduce the resilience of the already diminished populations of this endangered species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Temperature has a profound effect on the species composition and physiology of marine phytoplankton, a polyphyletic group of microbes responsible for half of global primary production. Here, we ask whether and how thermal reaction norms in a key calcifying species, the coccolithophore Emiliania huxleyi, change as a result of 2.5 years of experimental evolution to a temperature about 2°C below its upper thermal limit. Replicate experimental populations derived from a single genotype isolated from Norwegian coastal waters were grown at two temperatures for 2.5 years before assessing thermal responses at 6 temperatures ranging from 15 to 26°C, with pCO2 (400/1100/2200 ?atm) as a fully factorial additional factor. The two selection temperatures (15°/26.3°C) led to a marked divergence of thermal reaction norms. Optimal growth temperatures were 0.7°C higher in experimental populations selected at 26.3°C than those selected at 15.0°C. An additional negative effect of high pCO2 on maximal growth rate (8% decrease relative to lowest level) was observed. Finally, the maximum persistence temperature (Tmax) differed by 1-3°C between experimental treatments, as a result of an interaction between pCO2 and the temperature selection. Taken together, we demonstrate that several attributes of thermal reaction norms in phytoplankton may change faster than the predicted progression of ocean warming.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As the world's oceans continue to absorb anthropogenic CO2 from the atmosphere, the carbonate chemistry of seawater will change. This process, termed ocean acidification, may affect the physiology of marine organisms. Arctic seas are expected to experience the greatest decreases in pH in the future, as changing sea ice dynamics and naturally cold, brackish water, will accelerate ocean acidification. In this study, we investigated the effect of increased pCO2 on the early developmental stages of the key Arctic copepod Calanus glacialis. Eggs from wild-caught C. glacialis females from Svalbard, Norway (80°N), were cultured for 2 months to copepodite stage C1 in 2°C seawater under four pCO2 treatments (320, 530, 800, and 1700 ?atm). Developmental rate, dry weight, and carbon and nitrogen mass were measured every other day throughout the experiment, and oxygen consumption rate was measured at stages N3, N6, and C1. All endpoints were unaffected by pCO2 levels projected for the year 2300. These results indicate that naupliar development in wild populations of C. glacialis is unlikely to be detrimentally affected in a future high CO2 ocean.