61 resultados para Sommeil REM
Resumo:
The occurrence of diatom species in the Eocene-Oligocene sections of Ocean Drilling Program (ODP) Leg 115 sites and Deep Sea Drilling Project (DSDP) Sites 219 and 236 in the low-latitude Indian Ocean are investigated. Diatoms are generally rare and poorly preserved in the Paleogene sequences we studied. The best-preserved assemblages are found close to ash layers in early Oligocene sediments. The low-latitude diatom zonation established for the Atlantic region by Fenner in 1984 is fully applicable to the Paleogene sequences of the western Indian Ocean. Correlation of the diatom zones to the calcareous nannofossil stratigraphy of the sites places the Coscinodiscus excavatus Zone of Fenner within calcareous nannofossil Subzone CP16b. For the Mascarene Plateau and the Chagos Ridge, the times when the sites studied, together with the areas upslope from them, subsided to below the euphotic zone are deduced from changes in the relative abundance between the group of benthic, shallow-water species and Grammatophora spp. vs. the group of fully planktonic diatom species. The Eocene section of Site 707, on the Mascarene Plateau, is characterized by the occurrence of benthic diatoms (approximately 10% of the diatom assemblage). These allochthonous diatoms must have originated from shallow-water environments around volcanic islands that existed upslope from ODP Site 707 in Eocene times. In Oligocene and younger sediments of Sites 707 and 706, occurrences of benthic diatoms are rare and sporadic and interpreted as reworked from older sediments. This indicates that the area upslope from these two Mascarene Plateau sites had subsided below the euphotic zone by the early Oligocene. Only Grammatophora spp., for which a neritic but not benthic habitat is assumed, continues to be abundant throughout the Oligocene sequences. The area of the Madingley Rise sites (Sites 709-710) and nearby shallower areas subsided below the euphotic zone already in middle Eocene times, as benthic diatoms are almost absent from these Eocene sections. Only sites located on abyssal plains, and which intermittently received turbidite sediments (e.g., Sites 708 and 711), contain occasionally single, benthic diatoms of Oligocene age. The occurrence of the freshwater diatom Aulacosira granulata in a few samples of late early Oligocene and late Oligocene age at Sites 707, 709, and 714 is interpreted as windblown. Their presence indicates at least seasonally arid conditions for these periods in the source areas of eastern Africa and India. Three new species and two new combinations are defined: Chaetoceros asymmetricus Fenner sp. nov.; Hemiaulus gracilis Fenner, sp. nov.; Kozloviella meniscosa Fenner, sp. nov.; Cestodiscus demergitus (Fenner) Fenner comb, nov.; and Rocella princeps (Jouse) Fenner comb. nov.
Resumo:
Ocean acidification reduces the concentration of carbonate ions and increases those of bicarbonate ions in seawater compared with the present oceanic conditions. This altered composition of inorganic carbon species may, by interacting with ultraviolet radiation (UVR), affect the physiology of macroalgal species. However, very little is known about how calcareous algae respond to UVR and ocean acidification. Therefore, we conducted an experiment to determine the effects of UVR and ocean acidification on the calcified rhodophyte Corallina officinalis using CO2-enriched cultures with and without UVR exposure. Low pH increased the relative electron transport rates (rETR) but decreased the CaCO3 content and had a miniscule effect on growth. However, UVA (4.25 W m-2) and a moderate level of UVB (0.5 W m-2) increased the rETR and growth rates in C. officinalis, and there was a significant interactive effect of pH and UVR on UVR-absorbing compound concentrations. Thus, at low irradiance, pH and UVR interact in a way that affects the multiple physiological responses of C. officinalis differently. In particular, changes in the skeletal content induced by low pH may affect how C. officinalis absorbs and uses light. Therefore, the light quality used in ocean acidification experiments will affect the predictions of how calcified macroalgae will respond to elevated CO2.
Resumo:
Ocean Drilling Program (ODP) Leg 164 recovered a number of large solid gas hydrate from Sites 994, 996, and 997 on the Blake Ridge. Sites 994 and 997 samples, either nodular or thick massive pieces, were subjected to laboratory analysis and measurements to determine the structure, molecular and isotopic composition, thermal conductivity, and equilibrium dissociation conditions. X-ray computed tomography (CT) imagery, X-ray diffraction, nuclear magnetic resonance (NMR), and Raman spectroscopy have revealed that the gas hydrates recovered from the Blake Ridge are nearly 100% methane gas hydrate of Structure I, cubic with a lattice constant of a = 11.95 ± 0.05 angström, and a molar ratio of water to gas (hydration number) of 6.2. The d18O of water is 2.67 per mil to 3.51 per mil SMOW, which is 3.5-4.0 heavier than the ambient interstitial waters. The d13C and dD of methane are -66 per mil to -70 per mil and -201 per mil to -206 per mil, respectively, suggesting that the methane was generated through bacterial CO2 reduction. Thermal conductivity values of the Blake Ridge hydrates range from 0.3 to 0.5 W/(m K). Equilibrium dissociation experiments indicate that the three-phase equilibrium for the specimen is 3.27 MPa at 274.7 K. This is almost identical to that of synthetic pure methane hydrate in freshwater.
Resumo:
Analyses of the palynofacies and sporomorph thermal alteration indices (TAI) of sediments from Ocean Drilling Program (ODP) Sites 959 to 962 in the Cote d'Ivoire-Ghana Transform Margin, West Africa were undertaken to (1) determine the source and depositional conditions of the organic matter in the sediments, (2) refine a paleobathymetric curve derived from other data for Site 959, which drilled the most continuous sedimentary sequence from Pleistocene to Albian and (3) interpret the paleothermal history of the area. Twelve types of dispersed organic matter were identified: amorphous organic matter (AOM), marine palynomorphs, algae, resins, black debris, yellow-brown fragments, black-brown fragments, cuticles, plant tissue, wood, sporomorphs and fungi, The relative abundances of these organic matter components at each site were analyzed using cluster analysis, resulting in the identification of seven palynofacies assemblages at Site 959, five each at sites 960 and 961, and four at Site 962. Amorphous organic matter (which is chiefly marine derived), black debris and wood have played the most significant role in defining palynofacies assemblages. The palynofacies assemblages show some correlation with lithologic units, sediment sources and depositional environments. Previous palynofacies studies in passive margins have demonstrated that changes in the ratio of AOM to terrestrial organic matter are related primarily to proximal-distal positions of depositional environments relative to the shoreline. However, this assumption does not always hold true for a transform margin where tectonic factors play an important role in the organic matter distribution, at least in the early stages of evolution. Lithofacies, CCD paleodepths for the North Atlantic, trace fossil association, benthic foraminifera and palynofacies data were the criteria used for reconstructing a paleobathymetric curve for Site 959. A cyclicity in the organic matter distribution of the Upper Miocene to Lower Pliocene pelagic sediments could be related to fluctuations in productivity of biosiliceous and calcareous organisms, and sedimentation rates. A drastic increase in the amount of AOM and a decrease in black debris and wood in the carbonate and clastic rocks (Lithologic Unit IV) overlying the tectonized Albian sediments (Lithologic Unit V) at Sites 959 and 960 coincide with the presence of an unconformity. Qualitative color analysis of palynomorphs was undertaken for all sites, although the main focus was on Site 959 where detailed organic geochemical data were available. At Site 959, TAI values indicate an immature stage of organic maturation (<2) down to the black claystones of Lithologic Unit III at about 918.47 mbsf. Below this, samples show an increase with depth to a moderately mature stage (>2 except for the claystone samples between 1012.52 and 1036.5 mbsf, and one limestone sample at 1043.4 mbsf), reaching peak levels of 2.58 to 3.0 in the tectonized Albian sediments below the unconformity. These TAI values show a positive correlation with the Tma x values derived from Rock-Eval pyrolysis data. The highest values recorded in the basal tectonized units at all the sites (Sites 960-962 have mean values between 2.25 and 3.13) may be related to high heat flow during the intracontinental to syntransform basin stage in the region.
Resumo:
The magnetic stability and mean intensity of the natural remanent magnetization (NRM) of Leg 73 sediments (Holes 519 to 523) decreases with the age of the sediment. We demonstrate that these variations are linked with physical and chemical changes in the magnetic grains themselves. Alteration of the magnetic component occurs most rapidly shortly after deposition. A significant magnetic alteration over the topmost few meters of the sediments is thought to be the result of oxidation. The modification of the NRM characteristics through the partial dissolution of the carbonate is largely accounted for by the effects of concentraion of the magnetic minerals. We apply the techniques of rock-magnetism and X-ray fluorescence analysis to clarify the physical and chemical mechanisms that affect the magnetic character of the sediment.
Resumo:
Sediments from near the basement of a number of Deep Sea Drilling Project (DSDP) sites, from the Bauer Deep, and from the East Pacific Rise have unusually high transition metal-to-aluminum ratios. Similarities in the chemical, isotopic, and mineralogical compositions of these deposits point to a common origin. All the sediments studied have rare-earth-element (REE) patterns strongly resembling the pattern of sea water, implying either that the REE's were coprecipitated with ferromanganese hydroxyoxides (hydroxyoxides denote a mixture of unspecified hydrated oxides and hydroxides), or that they are incorporated in small concentrations of phosphatic fish debris found in all samples. Oxygen isotopic data indicate that the metalliferous sediments are in isotopic equilibrium with sea water and are composed of varying mixtures of two end-member phases with different oxygen isotopic compositions: an iron-manganese hydroxyoxide and an iron-rich montmorillonite. A low-temperature origin for the sediments is supported by mineralogical analyses by x-ray diffraction which show that goethite, iron-rich montmorillonite, and various manganese hydroxyoxides are the dominant phases present. Sr87/Sr86 ratios for the DSDP sediments are indistinguishable from the Sr87/Sr86 ratio in modern sea water. Since these sediments were formed 30 to 90 m.y. ago, when sea water had a lower Sr87/Sr86 value, the strontium in the poorly crystalline hydroxyoxides must be exchanging with interstitial water in open contact with sea water. In contrast, uranium isotopic data indicate that the metalliferous sediments have formed a closed system for this element. The sulfur isotopic compositions suggest that sea-water sulfur dominates these sediments with little or no contribution of magmatic or bacteriologically reduced sulfur. In contrast, ratios of lead isotopes in the metalliferous deposits resemble values for oceanic tholeiite basalt, but are quite different from ratios found in authigenic marine manganese nodules. Thus, lead in the metalliferous sediments appears to be of magmatic origin. The combined mineralogical, isotopic, and chemical data for these sediments suggest that they formed from hydrothermal solutions generated by the interaction of sea water with newly formed basalt crust at mid-ocean ridges. The crystallization of solid phases took place at low temperatures and was strongly influenced by sea water, which was the source for some of the elements found in the sediments.
Resumo:
The current study presents quantitative reconstructions of tree cover, annual precipitation and mean July temperature derived from the pollen record from Lake Billyakh (65°17'N, 126°47'E, 340 m above sea level) spanning the last ca. 50 kyr. The reconstruction of tree cover suggests presence of woody plants through the entire analyzed time interval, although trees played only a minor role in the vegetation around Lake Billyakh prior to 14 kyr BP (<5%). This result corroborates low percentages of tree pollen and low scores of the cold deciduous forest biome in the PG1755 record from Lake Billyakh. The reconstructed values of the mean temperature of the warmest month ~8-10 °C do not support larch forest or woodland around Lake Billyakh during the coldest phase of the last glacial between ~32 and ~15 kyr BP. However, modern cases from northern Siberia, ca. 750 km north of Lake Billyakh, demonstrate that individual larch plants can grow within shrub and grass tundra landscape in very low mean July temperatures of about 8 °C. This makes plausible our hypothesis that the western and southern foreland of the Verkhoyansk Mountains could provide enough moist and warm microhabitats and allow individual larch specimens to survive climatic extremes of the last glacial. Reconstructed mean values of precipitation are about 270 mm/yr during the last glacial interval. This value is almost 100 mm higher than modern averages reported for the extreme-continental north-eastern Siberia east of Lake Billyakh, where larch-dominated cold deciduous forest grows at present. This suggests that last glacial environments around Lake Billyakh were never too dry for larch to grow and that the summer warmth was the main factor, which limited tree growth during the last glacial interval. The n-alkane analysis of the Siberian plants presented in this study demonstrates rather complex alkane distribution patterns, which challenge the interpretation of the fossil records. In particular, extremely low n-alkane concentrations in the leaves of local coniferous trees and shrubs suggest that their contribution to the litter and therefore to the fossil lake sediments might be not high enough for tracing the Quaternary history of the needleleaved taxa using the n-alkane biomarker method.
Resumo:
In summer 2006 integrated geological, geochemical, hydrological, and hydrochemical studies were carried out in the relict anoxic Mogil'noe Lake (down to 16 m depths) located in the Kil'din Island in the Barents Sea. Chemical and grain size compositions of bottom sediments from the lake (permanently anoxic basin) and from the Baltic Sea deeps (periodically anoxic basins) were compared. Vertical location of the hydrogen sulfide layer boundary in the lake (9-11 m depths) was practically the same from 1974 up to now. Concentrations of suspended matter in the lake in June and July 2006 appeared to be close to its summer concentrations in seawater of the open Baltic Sea. Muds from the Mogil'noe Lake compared to those of the Baltic Sea deeps are characterized by fluid and flake consistency and by pronounced admixtures of sandy and silty fractions (probably of eolic origin). Lacustrine mud contains much plant remains; iron sulfides and vivianite were also found. Concentrations of 22 elements determined in lacustrine bottom sediments were of the same levels as those found here 33 years ago. Concentrations also appeared to be close to those in corresponding grain size types of bottom sediments in the Baltic Sea. Low C_org/N values (aver. 5.0) in muds of the Mogil'noe Lake compared to ones for muds of the Baltic Sea deeps (aver. 10) evidence considerable planktogenic component in organic matter composition of the lacustrine muds. No indications were reveled for anthropogenic contaminations of the lacustrine bottom sediments with toxic metals.
Resumo:
Two gravity cores retrieved off NW Africa at the border of arid and subtropical environments (GeoB 13602-1 and GeoB 13601-4) were analyzed to extract records of Late Quaternary climate change and sediment export. We apply End Member (EM) unmixing to 350 acquisition curves of isothermal remanent magnetization (IRM). Our approach enables to discriminate rock magnetic signatures of aeolian and fluvial material, to determine biomineralization and reductive diagenesis. Based on the occurrence of pedogenically formed magnetic minerals in the fluvial and aeolian EMs, we can infer that goethite formed in favor to hematite in more humid climate zones. The diagenetic EM dominates in the lower parts of the cores and within a thin near-surface layer probably representing the modern Fe**2+/Fe**3+ redox boundary. Up to 60% of the IRM signal is allocated to a biogenic EM underlining the importance of bacterial magnetite even in siliciclastic sediments. Magnetosomes are found well preserved over most of the record, indicating suboxic conditions. Temporal variations of the aeolian and fluvial EMs appear to faithfully reproduce and support trends of dry and humid conditions on the continent. The proportion of aeolian to fluvial material was dramatically higher during Heinrich Stadials, especially during Heinrich Stadial 1. Dust export from the Arabian-Asian corridor appears to vary contemporaneous to increased dust fluxes on the continental margin of NW Africa emphasizing that melt-water discharge in the North Atlantic had an enormous impact on atmospheric dynamics.
Resumo:
The Paleocene/Eocene Thermal Maximum (PETM) was a transient interval of global warming ~55 m.y. ago associated with transformation of ecosystems and changes in carbon cycling. The event was caused by the input of massive amounts of CO2 or CH4 to the ocean-atmosphere system. Rapid shoaling of the lysocline and calcite compensation depth (CCD) is a predicted response of CO2 or CH4 input; however, the extent of this shoaling is poorly constrained. Investigation of Ocean Drilling Program (ODP) Sites 1209-1212 at Shatsky Rise, which lies along a depth transect, suggests a minimum lysocline shoaling of ~500 m in the tropical Pacific Ocean during the PETM. The sites also show evidence of CaCO3 dissolution within the sediment column, carbonate "burn-down" below the level of the carbon isotope excursion, and a predicted response to a rapid change in deepwater carbonate saturation. Close examination of several foraminiferal preservation proxies (i.e., fragmentation, benthic/planktonic foraminiferal ratios, coarse fraction, and CaCO3 content) and observations of foraminifers reveal that increased fragmentation levels most reliably predict intervals with visually impoverished foraminiferal preservation as a result of dissolution. Low CaCO3 content and high benthic/planktonic ratios also mirror intervals of poorest preservation.
Resumo:
Modal analysis of middle Miocene to Pleistocene volcaniclastic sands and sandstones recovered from Sites 1108, 1109, 1118, 1112, 1115, 1116, and 1114 within the Woodlark Basin during Leg 180 of the Ocean Drilling Program indicates a complex source history for sand-sized detritus deposited within the basin. Volcaniclastic detritus (i.e., feldspar, ferromagnesian minerals, and volcanic rock fragments) varies substantially throughout the Woodlark Basin. Miocene sandstones of the inferred Trobriand forearc succession contain mafic and subordinate silicic volcanic grains, probably derived from the contemporary Trobriand arc. During the late Miocene, the Trobriand outerarc/forearc (including Paleogene ophiolitic rocks) was subaerially exposed and eroded, yielding sandstones of dominantly mafic composition. Rift-related extension during the late Miocene-late Pliocene led to a transition from terrestrial to neritic and finally bathyal deposition. The sandstones deposited during this period are composed dominantly of silicic volcanic detritus, probably derived from the Amphlett Islands and surrounding areas where volcanic rocks of Pliocene-Pleistocene age occur. During this time terrigenous and metamorphic detritus derived from the Papua New Guinea mainland reached the single turbiditic Woodlark rift basin (or several subbasins) as fine-grained sediments. At Sites 1108, 1109, 1118, 1116, and 1114, serpentinite and metamorphic grains (schist and gneiss) appear as detritus in sandstones younger than ~3 Ma. This is thought to reflect a major pulse of rifting that resulted in the deepening of the Woodlark rift basin and the prevention of terrigenous and metamorphic detritus from reaching the northern rift margin (Site 1115). The Paleogene Papuan ophiolite belt and the Owen Stanley metamorphics were unroofed as the southern margin of the rift was exhumed (e.g., Moresby Seamount) and, in places, subaerially exposed (e.g., D'Entrecasteaux Islands and onshore Cape Vogel Basin), resulting in new and more proximal sources of metamorphic, igneous, and ophiolitic detritus. Continued emergence of the Moresby Seamount during the late Pliocene-early Pleistocene bounded by a major inclined fault scarp yielded talus deposits of similar composition to the above sandstones. Upper Pliocene-Pleistocene sandstones were deposited at bathyal depths by turbidity currents and as subordinate air-fall ash. Silicic glassy (high-K calc-alkaline) volcanic fragments, probably derived from volcanic centers located in Dawson and Moresby Straits, dominated these sandstones.
Resumo:
The water masses in the Florida Straits and Bahamas region are important sources for the Northern Atlantic surface ocean circulation. In this study, we analyse carbonate preservation in surface sediments located above the chemical lysocline in the Florida Straits and Bahamas region and discuss possible reasons for supralysoclinal dissolution. Calcite dissolution proxies such as the variation of the foraminiferal assemblage, Fragmentation Index, Benthic Foraminifera Index, and Resistance Index displayed a good preservation in both areas. The pteropod species Limacina inflata showed very good preservation in sediments of inter-platform channels from the Great Bahama Bank (Providence Channel, Exuma Sound) above the aragonite lysocline. Supralysoclinal aragonite dissolution, however, was observed at two water depth levels (800-1000 m and below 1500 m) in the Florida Straits. Our observations suggest that the supralysoclinal dissolution in the Florida Straits is due to the degradation of organic material. The presence of Antarctic Intermediate Water (AAIW) may be a contributing factor for the significant aragonite dissolution in 800-1000 m. The comparison of modern preservation patterns of the surface sediments with hydrographical measurements shows that the L. inflata Dissolution Index (LDX) might be an adequate proxy to reconstruct paleo-water mass conditions in an area which is highly saturated with respect to calcium carbonate.
Resumo:
Based on a well-established stratigraphic framework and 47 AMS-14C dated sediment cores, the distribution of facies types on the NW Iberian margin is analysed in response to the last deglacial sea-level rise, thus providing a case study on the sedimentary evolution of a high-energy, low-accumulation shelf system. Altogether, four main types of sedimentary facies are defined. (1) A gravel-dominated facies occurs mostly as time-transgressive ravinement beds, which initially developed as shoreface and storm deposits in shallow waters on the outer shelf during the last sea-level lowstand; (2) A widespread, time-transgressive mixed siliceous/biogenic-carbonaceous sand facies indicates areas of moderate hydrodynamic regimes, high contribution of reworked shelf material, and fluvial supply to the shelf; (3) A glaucony-containing sand facies in a stationary position on the outer shelf formed mostly during the last-glacial sea-level rise by reworking of older deposits as well as authigenic mineral formation; and (4) A mud facies is mostly restricted to confined Holocene fine-grained depocentres, which are located in mid-shelf position. The observed spatial and temporal distribution of these facies types on the high-energy, low-accumulation NW Iberian shelf was essentially controlled by the local interplay of sediment supply, shelf morphology, and strength of the hydrodynamic system. These patterns are in contrast to high-accumulation systems where extensive sediment supply is the dominant factor on the facies distribution. This study emphasises the importance of large-scale erosion and material recycling on the sedimentary buildup during the deglacial drowning of the shelf. The presence of a homogenous and up to 15-m thick transgressive cover above a lag horizon contradicts the common assumption of sparse and laterally confined sediment accumulation on high-energy shelf systems during deglacial sea-level rise. In contrast to this extensive sand cover, laterally very confined and maximal 4-m thin mud depocentres developed during the Holocene sea-level highstand. This restricted formation of fine-grained depocentres was related to the combination of: (1) frequently occurring high-energy hydrodynamic conditions; (2) low overall terrigenous input by the adjacent rivers; and (3) the large distance of the Galicia Mud Belt to its main sediment supplier.
Resumo:
The oceanic carbon cycle mainly comprises the production and dissolution/ preservation of carbonate particles in the water column or within the sediment. Carbon dioxide is one of the major controlling factors for the production and dissolution of carbonate. There is a steady exchange between the ocean and atmosphere in order to achieve an equilibrium of CO2; an anthropogenic rise of CO2 in the atmosphere would therefore also increase the amount of CO2 in the ocean. The increased amount of CO2 in the ocean, due to increasing CO2-emissions into the atmosphere since the industrial revolution, has been interpreted as "ocean acidification" (Caldeira and Wickett, 2003). Its alarming effects, such as dissolution and reduced CaCO3 formation, on reefs and other carbonate shell producing organisms form the topic of current discussions (Kolbert, 2006). Decreasing temperatures and increasing pressure and CO2 enhance the dissolution of carbonate particles at the sediment-water interface in the deep sea. Moreover, dissolution processes are dependent of the saturation state of the surrounding water with respect to calcite or aragonite. Significantly increased dissolution has been observed below the aragonite or calcite chemical lysocline; below the aragonite compensation depth (ACD), or calcite compensation depth (CCD), all aragonite or calcite particles, respectively, are dissolved. Aragonite, which is more prone to dissolution than calcite, features a shallower lysocline and compensation depth than calcite. In the 1980's it was suggested that significant dissolution also occurs in the water column or at the sediment-water interface above the lysocline. Unknown quantities of carbonate produced at the sea surface, would be dissolved due to this process. This would affect the calculation of the carbonate production and the entire carbonate budget of the world's ocean. Following this assumption, a number of studies have been carried out to monitor supralysoclinal dissolution at various locations: at Ceara Rise in the western equatorial Atlantic (Martin and Sayles, 1996), in the Arabian Sea (Milliman et al., 1999), in the equatorial Indian Ocean (Peterson and Prell, 1985; Schulte and Bard, 2003), and in the equatorial Pacific (Kimoto et al., 2003). Despite the evidence for supralysoclinal dissolution in some areas of the world's ocean, the question still exists whether dissolution occurs above the lysocline in the entire ocean. The first part of this thesis seeks answers to this question, based on the global budget model of Milliman et al. (1999). As study area the Bahamas and Florida Straits are most suitable because of the high production of carbonate, and because there the depth of the lysocline is the deepest worldwide. To monitor the occurrence of supralysoclinal dissolution, the preservation of aragonitic pteropod shells was determined, using the Limacina inflata Dissolution Index (LDX; Gerhardt and Henrich, 2001). Analyses of the grain-size distribution, the mineralogy, and the foraminifera assemblage revealed further aspects concerning the preservation state of the sediment. All samples located at the Bahamian platform are well preserved. In contrast, the samples from the Florida Straits show dissolution in 800 to 1000 m and below 1500 m water depth. Degradation of organic material and the subsequent release of CO2 probably causes supralysoclinal dissolution. A northward extension of the corrosive Antarctic Intermediate Water (AAIW) flows through the Caribbean Sea into the Gulf of Mexico and might enhance dissolution processes at around 1000 m water depth. The second part of this study deals with the preservation of Pliocene to Holocene carbonate sediments from both the windward and leeward basins adjacent to Great Bahama Bank (Ocean Drilling Program Sites 632, 633, and 1006). Detailed census counts of the sand fraction (250-500 µm) show the general composition of the coarse grained sediment. Further methods used to examine the preservation state of carbonates include the amount of organic carbon and various dissolution indices, such as the LDX and the Fragmentation Index. Carbonate concretions (nodules) have been observed in the sand fraction. They are similar to the concretions or aggregates previously mentioned by Mullins et al. (1980a) and Droxler et al. (1988a), respectively. Nonetheless, a detailed study of such grains has not been made to date, although they form an important part of periplatform sediments. Stable isotopemeasurements of the nodules' matrix confirm previous suggestions that the nodules have formed in situ as a result of early diagenetic processes (Mullins et al., 1980a). The two cores, which are located in Exuma Sound (Sites 632 and 633), at the eastern margin of Great Bahama Bank (GBB), show an increasing amount of nodules with increasing core depth. In Pliocene sediments, the amount of nodules might rise up to 100%. In contrast, nodules only occur within glacial stages in the deeper part of the studied core interval (between 30 and 70 mbsf) at Site 1006 on the western margin of GBB. Above this level the sediment is constantly being flushed by bottom water, that might also contain corrosive AAIW, which would hinder cementation. Fine carbonate particles (<63 µm) form the matrix of the nodules and do therefore not contribute to the fine fraction. At the same time, the amount of the coarse fraction (>63 µm) increases due to the nodule formation. The formation of nodules might therefore significantly alter the grain-size distribution of the sediment. A direct comparison of the amount of nodules with the grain-size distribution shows that core intervals with high amounts of nodules are indeed coarser than the intervals with low amounts of nodules. On the other hand, an initially coarser sediment might facilitate the formation of nodules, as a high porosity and permeability enhances early diagenetic processes (Westphal et al., 1999). This suggestion was also confirmed: the glacial intervals at Site 1006 are interpreted to have already been rather coarse prior to the formation of nodules. This assumption is based on the grain-size distribution in the upper part of the core, which is not yet affected by diagenesis, but also shows coarser sediment during the glacial stages. As expected, the coarser, glacial deposits in the lower part of the core show the highest amounts of nodules. The same effect was observed at Site 632, where turbidites cause distinct coarse layers and reveal higher amounts of nodules than non-turbiditic sequences. Site 633 shows a different pattern: both the amount of nodules and the coarseness of the sediment steadily increase with increasing core depth. Based on these sedimentological findings, the following model has been developed: a grain-size pattern characterised by prominent coarse peaks (as observed at Sites 632 and 1006) is barely altered. The greatest coarsening effect due to the nodule formation will occur in those layers, which have initially been coarser than the adjacent sediment intervals. In this case, the overall trend of the grain-size pattern before and after formation of the nodules is similar to each other. Although the sediment is altered due to diagenetic processes, grain size could be used as a proxy for e.g. changes in the bottom-water current. The other case described in the model is based on a consistent initial grain-size distribution, as observed at Site 633. In this case, the nodule reflects the increasing diagenetic alteration with increasing core depth rather than the initial grain-size pattern. In the latter scenario, the overall grain-size trend is significantly changed which makes grain size unreliable as a proxy for any palaeoenvironmental changes. The results of this study contribute to the understanding of general sedimentation processes in the periplatform realm: the preservation state of surface samples shows the influence of supralysoclinal dissolution due to the degradation of organic matter and due to the presence of corrosive water masses; the composition of the sand fraction shows the alteration of the carbonate sediment due to early diagenetic processes. However, open questions are how and when the alteration processes occur and how geochemical parameters, such as the rise in alkalinity or the amount of strontium, are linked to them. These geochemical parameters might reveal more information about the depth in the sediment column, where dissolution and cementation processes occur.
Resumo:
Volcanogenic sediments were obtained from Site 584, located on the midslope of the Japan Trench. Occurrences of volcanic ash in the diatomaceous mudstones increase within sediments dated 6-3 Ma. The frequency pattern and the sediment accumulation rate obtained at Site 584 are similar to those of Site 440 and to those of Sites 438 and 439, located on the upper slope basin. Explosive volcanism increased during the Pliocene and late Miocene in relation to the intrusion of Tertiary granites and uplift of the Tohoku Arc (northeastern Japan Arc). Hygromagmaphile element concentration shows that the glass does not belong to a unique series, and a comparison with Nankai Trough data distinguishes at least two different evolutionary lines.