60 resultados para Reactions in Polar Aprotic Media


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study assessed and compared the oxidative and reductive biotransformation of brominated flame retardants, including established polybrominated diphenyl ethers (PBDEs) and emerging decabromodiphenyl ethane (DBDPE) using an in vitro system based on liver microsomes from various arctic marine-feeding mammals: polar bear (Ursus maritimus), beluga whale (Delphinapterus leucas), and ringed seal (Pusa hispida), and in laboratory rat as a mammalian model species. Greater depletion of fully brominated BDE209 (14-25% of 30pmol) and DBDPE (44-74% of 90pmol) occurred in individuals from all species relative to depletion of lower brominated PBDEs (BDEs 99,100, and 154; 0-3% of 30pmol). No evidence of simply debrominated metabolites was observed. Investigation of phenolic metabolites in rat and polar bear revealed formation of two phenolic, likely multiply debrominated, DBDPE metabolites in polar bear and one phenolic BDE154 metabolite in polar bear and rat microsomes. For BDE209 and DBDPE, observed metabolite concentrations were low to nondetectable, despite substantial parent depletion. These findings suggested possible underestimation of the ecosystem burden of total-BDE209, as well as its transformation products, and a need for research to identify and characterize the persistence and toxicity of major BDE209 metabolites. Similar cause for concern may exist regarding DBDPE, given similarities of physicochemical and environmental behavior to BDE209, current evidence of biotransformation, and increasing use of DBDPE as a replacement for BDE209.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basement at Ocean Drilling Program (ODP) Sites 677 and 678 originated from the Galapagos spreading center of the Costa Rica Rift and has moved about 200 km over the last 6 m.y. (Fig. 1) (Shipboard Scientific Party, 1987, 1988; Scientific Drilling Party, 1987). Sediments about 300 m thick cover basement so young that basal sediments at Sites 677 and 678 have been reheated up to 60?-70?C at Site 677 and altered to limestone and/or chert (Shipboard Scientific Party, 1988). Sediments from both sites indicate (1) a high sedimentation rate (about 48 m/m.y.) and (2) biogenic silica and carbonate as the main constituents of sediments (Table 1) (Shipboard Scientific Party, 1988). Heatflow observations and measurements of interstitial water chemistry around the sites show that Site 677 is in a lower heatflow zone (166 mW/m**2; 1°12.14'N, 83°44.22'W) whereas Site 678 is located in a zone of higher heat flow (250 mW/m**2; 1°13.01'N, 83°43.39'W) (Langseth et al., 1988; Shipboard Scientific Party, 1988). In the flank hydrothermal systems, circulating solution is moving upward through the sedimentary column in zones of higher heat flow while it is moving downward in zones of lower heat flow (Anderson and Skilbeck, 1981). The chemistry of the interstitial waters is modified by several processes such as (1) diagenetic reactions and (2) advective and (3) diffusive transports of dissolved constituents. Analyses of Ca2+ and Mg2+ in interstitial waters from Sites 677 and 678 show that their profiles are mainly controlled by advective transport (Shipboard Scientific Party, 1988). In contrast, the interstitial-water profiles for NH4+, Si, and PO4[3-] are highly affected by reactions in the sediments. Site 677 offers a good opportunity to investigate amino acids in the interstitial waters because sediments of similar compositions have been deposited at constant rates of sedimentation. There are few previous works on amino acid distributions in interstitial waters (Henrichs and Parrington, 1979; Michaelis et al., 1982; Henrichs et al., 1984; Henrichs and Farrington, 1987; Ishizuka et al., 1988). In this chapter, we report (1) Rock-Eval analysis and (2) the composition of total hydrolyzable and dissolved free amino acids (THAA and DFAA, respectively) in the interstitial waters. Our objectives are to discuss (1) the possible origin of organic materials, (2) the characteristics of THAA and DFAA, and (3) their relationships in interstitial waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two global environmental issues, climate change and contamination by persistent organic pollutants, represent major concerns for arctic ecosystems. Yet, it is unclear how these two stressors interact in the Arctic. For instance, the influence of climate-associated changes in food web structure on exposure to pollutants within arctic ecosystems is presently unknown. Here, we report on recent changes in feeding ecology (1991-2007) in polar bears (Ursus maritimus) from the western Hudson Bay subpopulation that have resulted in increases in the tissue concentrations of several chlorinated and brominated contaminants. Differences in timing of the annual sea ice breakup explained a significant proportion of the diet variation among years. As expected from climate change predictions, this diet change was consistent with an increase in the consumed proportions of open water-associated seal species compared to ice-associated seal species in years of earlier sea ice breakup. Our results demonstrate that climate change is a modulating influence on contaminants in this polar bear subpopulation and may pose an additional and previously unidentified threat to northern ecosystems through altered exposures to contaminants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial carbon demand, an important component of ecosystem dynamics in polar waters and sea ice, is a function of both bacterial production (BP) and respiration (BR). BP has been found to be generally higher in sea ice than underlying waters, but rates of BR and bacterial growth efficiency (BGE) are poorly characterized in sea ice. Using melted ice core incubations, community respiration (CR), BP, and bacterial abundance (BA) were studied in sea ice and at the ice-water interface (IWI) in the Western Canadian Arctic during the spring and summer 2008. CR was converted to BR empirically. BP increased over the season and was on average 22 times higher in sea ice as compared with the IWI. Rates in ice samples were highly variable ranging from 0.2 to 18.3 µg C/l/d. BR was also higher in ice and on average ~10 times higher than BP but was less variable ranging from 2.39 to 22.5 µg C/l/d. Given the high variability in BP and the relatively more stable rates of BR, BP was the main driver of estimated BGE (r**2 = 0.97, P < 0.0001). We conclude that microbial respiration can consume a significant proportion of primary production in sea ice and may play an important role in biogenic CO2 fluxes between the sea ice and atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the antibiotic resistance profiling of bacterial isolates collected from Ny-Alesund, Arctic, as part of the Indian Arctic Summer Expedition 2009. It was interesting to note that the bacterial isolates collected from the Arctic showed multidrug resistance. 32% of the isolates were found to be multi- drug resistant with several combinations of antibiotics. The 16S rRNA sequencing results shows a diverse group of bacteria belonging to Phyla Proteobacteria, Actinobacteria and Bacteriodetes and their relatedness was studied by phylogenetic analysis. While analysing the plasmid profiling, the most resistant two strains of Pseudomonas migulae showed multiple plasmids of varying sizes ~5.2-5.3 kb and ~9.5 kb. The extent and frequency of multidrug resistance in the polar bacteria deserves close monitoring and efforts to understand the various molecular mechanisms of drug resistance and control the spread of antibiotic resistance in polar environment is called for.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentration of C37-C39 long-chain alkenones and alkenes were determined in surface water and surface sediment samples from the subpolar waters of the Southern Ocean. Distributions of these compounds were similar in both sample sets indicating little differential degradation between or within compound classes. The relative amounts of the tri- to tetra-unsaturated C37 alkenones increased with increasing temperature for temperatures below 6°C similar to the di- and tri-unsaturated C37 alkenones. The C37 di-, tri-, and tetra-unsaturated methyl alkenones are used in paleotemperature calculations via the U37K and the U37K ratios. In these datasets, the relative abundances of the C37:2 and the C37.3 alkenones as a proportion of the total C37 alkenones were opposite and strongly related to temperature (the latter with more scatter), but the abundance of the C37:4 alkenone showed no relationship with temperature. The original definition of U37K includes the abundance of 37:4 in both the numerator and denominator, and thus it is perhaps not surprising that there is considerable scatter in the values obtained for U37K at low temperatures. Of the two, we suggest that U37K' is the better parameter for use in paleotemperature estimations, even in cold locations. U37K' values in the sediments fall on virtually the same regression line obtained for the water column samples of Sikes and Volkman (1993, doi:10.1016/0016-7037(93)90120-L), indicating that their calibration is suitable for use in Southern Ocean sediments. The comparison of water column data with sedimentary temperature estimates suggests that the alkenone distributions are dominated by contributions from the summer when the biomass of Emiliania huxleyi and presumably flux to the sediment, is expected to be high.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We measured light absorption in 42 marine snow, sea ice, seawater, brine, and frost flower samples collected during the OASIS field campaign between February 27 and April 15, 2009. Samples represented multiple sites between landfast ice and open pack ice in coastal areas approximately 5 km west of Barrow, Alaska. The chromophores that are most commonly measured in snow, H2O2, NO3-, and NO2-, on average account for less than 1% of sunlight absorption in our samples. Instead, light absorption is dominated by unidentified "residual" species, likely organic compounds. Light absorption coefficients for the frost flowers on first-year sea ice are, on average, 40 times larger than values for terrestrial snow samples at Barrow, suggesting very large rates of photochemical reactions in frost flowers. For our marine samples the calculated rates of sunlight absorption and OH production from known chromophores are (0.1-1.4) x 10**14 (photons/cm**3/s) and (5-70) x 10**-12 (mol/L/s), respectively. Our residual spectra are similar to spectra of marine chromophoric dissolved organic matter (CDOM), suggesting that CDOM is the dominant chromophore in our samples. Based on our light absorption measurements we estimate dissolved organic carbon (DOC) concentrations in Barrow seawater and frost flowers as approximately 130 and 360 µM C, respectively. We expect that CDOM is a major source of OH in our marine samples, and it is likely to have other significant photochemistry as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissolution of anthropogenic CO(2) increases the partial pressure of CO(2) (pCO(2)) and decreases the pH of seawater. The rate of Fe uptake by the dominant N(2)-fixing cyanobacterium Trichodesmium declines as pH decreases in metal-buffered medium. The slower Fe-uptake rate at low pH results from changes in Fe chemistry and not from a physiological response of the organism. Contrary to previous observations in nutrient-replete media, increasing pCO(2)/decreasing pH causes a decrease in the rates of N(2) fixation and growth in Trichodesmium under low-Fe conditions. This result was obtained even though the bioavailability of Fe was maintained at a constant level by increasing the total Fe concentration at low pH. Short-term experiments in which pCO(2) and pH were varied independently showed that the decrease in N(2) fixation is caused by decreasing pH rather than by increasing pCO(2) and corresponds to a lower efficiency of the nitrogenase enzyme. To compensate partially for the loss of N(2) fixation efficiency at low pH, Trichodesmium synthesizes additional nitrogenase. This increase comes partly at the cost of down-regulation of Fe-containing photosynthetic proteins. Our results show that although increasing pCO(2) often is beneficial to photosynthetic marine organisms, the concurrent decreasing pH can affect primary producers negatively. Such negative effects can occur both through chemical mechanisms, such as the bioavailability of key nutrients like Fe, and through biological mechanisms, as shown by the decrease in N(2) fixation in Fe-limited Trichodesmium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polygonal tundra, thermokarst basins and pingos are common and characteristic periglacial features of arctic lowlands underlain by permafrost in Northeast Siberia. Modern polygonal mires are in the focus of biogeochemical, biological, pedological, and cryolithological research with special attention to their carbon stocks and greenhouse-gas fluxes, their biodiversity and their dynamics and functioning under past, present and future climate scenarios. Within the frame of the joint German-Russian DFG-RFBR project Polygons in tundra wetlands: state and dynamics under climate variability in Polar Regions (POLYGON) field studies of recent and of late Quaternary environmental dynamics were carried out in the Indigirka lowland and in the Kolyma River Delta in summer 2012 and summer 2013. Using a multidisciplinary approach, several types of polygons and thermokarst lakes were studied in different landscapes units in the Kolyma Delta in 2012 around the small fishing settlement Pokhodsk. The floral and faunal associations of polygonal tundra were described during the fieldwork. Ecological, hydrological, meteorological, limnological, pedological and cryological features were studied in order to evaluate modern and past environmental conditions and their essential controlling parameters. The ecological monitoring and collection program of polygonal ponds were undertaken as in 2011 in the Indigirka lowland by a former POLYGON expedition (Schirrmeister et al. [eds.] 2012). Exposures, pits and drill cores in the Kolyma Delta were studied to understand the cryolithological structures of frozen ground and to collect samples for detailed paleoenvironmental research of the late Quaternary past. Dendrochronological and ecological studies were carried out in the tree line zone south of the Kolyma Delta. Based on previous work in the Indigirka lowland in 2011 (Schirrmeister et al. [eds.] 2012), the environmental monitoring around the Kytalyk research station was continued until the end of August 2012. In addition, a classical exposure of the late Pleistocene permafrost at the Achchaygy Allaikha River near Chokurdakh was studied. The ecological studies near Pokhodsk were continued in 2013 (chapter 13). Other fieldwork took place at the Pokhodsk-Yedoma-Island in the northwestern part of the Kolyma Delta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to examine the plasma concentrations and prevalence of polychlorinated biphenyls (PCBs) and hydroxylated PCB-metabolites (OH-PCBs) in polar bear (Ursus maritimus) mothers (n = 26) and their 4 months old cubs-of-the-year (n = 38) from Svalbard to gain insight into the mother-cub transfer, biotransformation and to evaluate the health risk associated with the exposure to these contaminants. As samplings were performed in 1997/1998 and 2008, we further investigated the differences in levels and pattern of PCBs between the two sampling years. The plasma concentrations of Sum(21)PCBs (1997/1998: 5710 ± 3090 ng/g lipid weight [lw], 2008: 2560±1500 ng/g lw) and Sum(6)OH-PCBs (1997/1998: 228 ± 60 ng/g wet weight [ww], 2008: 80 ± 38 ng/g ww) in mothers were significantly lower in 2008 compared to in 1997/1998. In cubs, the plasma concentrations of Sum(21)PCBs (1997/1998: 14680 ± 5350 ng/g lw, 2008: 6070 ± 2590 ng/g lw) and Sum(6)OH-PCBs (1997/1998: 98 ± 23 ng/g ww, 2008: 49 ± 21 ng/g ww) were also significantly lower in 2008 than in 1997/1998. Sum(21)PCBs in cubs was 2.7 ± 0.7 times higher than in their mothers. This is due to a significant maternal transfer of these contaminants. In contrast, Sum(6)OH-PCBs in cubs were approximately 0.53 ± 0.16 times the concentration in their mothers. This indicates a lower maternal transfer of OH-PCBs compared to PCBs. The majority of the metabolite/precursor-ratios were lower in cubs compared to mothers. This may indicate that cubs have a lower endogenous capacity to biotransform PCBs to OH-PCBs than polar bear mothers. Exposure to PCBs and OH-PCBs is a potential health risk for polar bears, and the levels of PCBs and OH-PCBs in cubs from 2008 were still above levels associated with health effects in humans and wildlife.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frost flowers are ice crystals that grow on refreezing sea ice leads in Polar Regions by wicking brine from the sea ice surface and accumulating vapor phase condensate. These crystals contain high concentrations of mercury (Hg) and are believed to be a source of reactive halogens, but their role in Hg cycling and impact on the fate of Hg deposited during atmospheric mercury depletion events (AMDEs) are not well understood. We collected frost flowers growing on refreezing sea ice near Barrow, Alaska (U.S.A.) during an AMDE in March 2009 and measured Hg concentrations and Hg stable isotope ratios in these samples to determine the origin of Hg associated with the crystals. We observed decreasing Delta199Hg values in the crystals as they grew from new wet frost flowers (mean Delta199Hg = 0.77 ± 0.13 per mil, 1 s.d.) to older dry frost flowers (mean Delta199Hg = 0.10 ± 0.05 per mil, 1 s.d.). Over the same time period, mean Hg concentrations in these samples increased from 131 ± 6 ng/L (1 s.d.) to 180 ± 28 ng/L (1 s.d.). Coupled with a previous study of Hg isotopic fractionation during AMDEs, these results suggest that Hg initially deposited to the local snowpack was subsequently reemitted during photochemical reduction reactions and ultimately accumulated on the frost flowers. As a result of this process, frost flowers may lead to enhanced local retention of Hg deposited during AMDEs and may increase Hg loading to the Arctic Ocean.