302 resultados para Profiles across Mediterranean Sedimentary Systems


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Siliciclastic turbidites represent huge volumes of sediments, which are of particular significance for (1) petroleum researchers, interested in their potential as oil reservoirs and (2) sedimentologists, who aim at understanding sediment transport processes from continent to deep-basins. An important challenge when studying marine turbidites has been to establish a reliable chronology for the deposits. Indeed, conventional marine proxies applied to hemipelagic sediments are often unreliable in detrital clays. In siliciclastic turbidites, those proxies can be used only in hemipelagic intervals, providing a poor constraint on their chronology. In this study, we have used sediments from the Rhône Neofan (NW Mediterranean Sea) to demonstrate that pollen grains can provide a high-resolution chronostratigraphical framework for detrital clays in turbidites. Vegetation changes occurring from the end of Marine Isotopic Stage 3 to the end of Marine Isotopic Stage 2 (from ~30 to ~18 ka cal. BP) are clearly recorded where other proxies have failed previously, mainly because the scarcity of foraminifers in these sediments prevented any continuous Sea Surface Temperature (SST) record and radiocarbon dating to be obtained. We show also that the use of palynology in turbidite deposits is able to contribute to oceanographical and sedimentological purposes: (1) Pinus pollen grains can document the timing of sea-level rise, (2) the ratio between pollen grains transported from the continent via rivers and dinoflagellate cysts (elutriating) allows us to distinguish clearly detrital sediments from pelagic clays. Finally, taken together, all these tools show evidence that the Rhône River disconnected from the canyon during the sea-level rise and thus evidence the subsequent rapid starvation of the neofan at 18.5 ka cal. BP. Younger sediments are hemipelagic: the frequency of foraminifers allowed to date sediments with radiocarbon. First results of Sea Surface Temperature obtained on foraminifers are in good agreement with the dinoflagellate cysts climatic signal. Both provide information on the end of the deglaciation and the Holocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the first section of the "Meteor" cruise No. 2 a profile was run from the Azores to the south across the flanks of the Mid-Atlantic Ridge with a chain of seamounts. The profile extended between the Cruiser (living) and the Hyeres seamounts, which, according to our soundings, form a connected massif, and across the centre of the Grosse Meteor Bank (30°N, 28.5 °W). These seamounts rise from a depth of more than 4000 m up till close to the surface of the sea forming there a large almost flat plateau. In the case of the Grosse Meteor Bank, this plateau has a N-S extension of approx. 30 nautical miles and an E-W extension of approx. 20 nautical miles and reaches a height of 275 m in water depth. The gravity measurements yielded a density of the topographic masses of 2.6 g/cm**3 for the Grosse Meteor Bank. Magnitude and shape of the measured free-air anomaly are very well shown in a model computation with this density. The theoretical gravity effects of the seismically detected swell of cristalline rock and of the Moho depression (mountain root) are not indicated by the observational data. It can, therefore, be assumed that the latter two neutralize each other. It seems, accordingly, that there is no local isostatic compensation of the topographic masses. Hence, the density of 2.6 g/cm**3 obtained would be about the true density of rock. In connection with the mean velocity of P waves (Aric et al., 1968) obtained by seismic refraction methods it must be concluded that the material of the 1200-4000 m thick surface layer of the Grosse Meteor Bank consists of consolidated sediments. This finding is supported by the total intensity of the Earth's magnetic field over the Grosse Meteor Bank. On the assumption of a homogeneous magnetization in the direction of the present Earth's field, the computed anomaly of the massif deviates considerably from the measured anomaly while the magnetic field of the seismically detected crystalline body is capable of interpreting the observed data. Deviating from the prevailing interpretation of the seamounts' plateau as a volcanic cone with submarine abrasion, the Grosse Meteor Bank and the seamounts in the vicinity are assumed to be of continental origin. The questions whether these seamounts submerged later on or whether the sealevel has risen subsequently are, therefore, largely nonexistent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rain regime of the Levant during the late Quaternary was controlled primarily by Mediterranean cyclonic systems associated with North Atlantic climate shifts. Lake levels in the Dead Sea basin have been robust recorders of the regional hydrology and generally indicate highstand (wet) conditions throughout glacial intervals and lowstands (dry) during interglacials. However, sporadic deposition of travertines and speleothems occurred in the Negev Desert and Arava Valley during past interglacials, suggesting intrusions of humidity from southern sources probably in association with enhanced activity of mid-latitude Red Sea synoptic troughs and/or low-latitude tropical plumes. The southerly incursions of wetness were superimposed on the long-term interglacial Levantine arid conditions, as reflected by the current prevailing hyperaridity, and could have had an important impact on human migra- tion through the Red Sea-Dead Sea corridor.