274 resultados para Microbial community composition
Resumo:
Marine sediments harbor an enormous quantity of microorganisms, including a multitude of novel species. The habitable zone of the marine sediment column begins at the sediment-water interface and probably extends to depths of several thousands of meters. Studies of the microbial diversity in this ecosystem have mostly relied on molecular biological techniques. We used a complementary method - analysis of intact polar membrane lipids - to characterize the in-situ microbial community in sediments covering a wide range of environmental conditions from Peru Margin, Equatorial Pacific, Hydrate Ridge, and Juan de Fuca Ridge. Bacterial and eukaryotic phospholipids were only detected in surface sediments from the Peru Margin. In contrast, deeply buried sediments, independent of their geographic location, were dominated by archaeal diether and tetraether lipids with various polar head groups and core lipids. We compared ring distributions of archaeal tetraether lipids derived from polar glycosidic precursors with those that are present as core lipids. The distributions of these related compound pools were distinct, suggestive of different archaeal sources, i.e., the polar compounds derive from sedimentary communities and the core lipids are fossil remnants from planktonic communities with possible admixtures of decayed sedimentary archaea. This in-situ production of distinct archaeal lipid populations potentially affects applications of the TEX86 paleotemperature proxy as demonstrated by offsets in reconstructed temperatures between both pools. We evaluated how varying cell and lipid stabilities will influence the sedimentary pool by using a box-model. The results are consistent with (i) a requirement of continuous inputs of freshly synthesized lipids in subsurface sediments for explaining the observed distribution of intact polar lipids, and (ii) decreasing lipid inputs with increasing burial depth.
Resumo:
Seamounts are of great interest to science, industry and conservation because of their potential role as 'stirring rods' of the oceans, their enhanced productivity, their high local biodiversity, and the growing exploitation of their natural resources. This is accompanied by rising concern about the threats to seamount ecosystems, e.g. through over-fishing and the impact of trawling. OASIS described the functioning characteristics of seamount ecosystems. OASIS' integrated hydrographic, biogeochemical and biological information. Based on two case studies. The scientific results, condensed in conceptual and mass balanced ecosystem models, were applied to outline a model management plan as well as site-specific management plans for the seamounts investigated. OASIS addressed five main objectives: Objective 1: To identify and describe the physical forcing mechanisms effecting seamount systems Objective 2: To assess the origin, quality and dynamics of particulate organic material within the water column and surface sediment at seamounts. Objective 3: To describe aspects of the biodiversity and the ecology of seamount biota, to assess their dynamics and the maintenance of their production. Objective 4: Modelling the trophic ecology of seamount ecosystems. Objective 5: Application of scientific knowledge to practical conservation.
Resumo:
The phytoplankton community composition and productivity in waters of the Amundsen Sea and surrounding sea ice zone were characterized with respect to iron (Fe) input from melting glaciers. High Fe input from glaciers such as the Pine Island Glacier, and the Dotson and Crosson ice shelves resulted in dense phytoplankton blooms in surface waters of Pine Island Bay, Pine Island Polynya, and Amundsen Polynya. Phytoplankton biomass distribution was the opposite of the distribution of dissolved Fe (DFe), confirming the uptake of glacial DFe in surface waters by phytoplankton. Phytoplankton biomass in the polynyas ranged from 0.6 to 14 µg Chl a / L, with lower biomass at glacier sites where strong upwelling of Modified Circumpolar Deep Water from beneath glacier tongues was observed. Phytoplankton blooms in the polynyas were dominated by the haptophyte Phaeocystis antarctica, whereas the phytoplankton community in the sea ice zone was a mix of P. antarctica and diatoms, resembling the species distribution in the Ross Sea. Water column productivity based on photosynthesis versus irradiance characteristics averaged 3.00 g C /m**2/d in polynya sites, which was approximately twice as high as in the sea ice zone. The highest water column productivity was observed in the Pine Island Polynya, where both thermally and salinity stratified waters resulted in a shallow surface mixed layer with high phytoplankton biomass. In contrast, new production based on NO3 uptake was similar between different polynya sites, where a deeper UML in the weakly, thermally stratified Pine Island Bay resulted in deeper NO3 removal, thereby offsetting the lower productivity at the surface. These are the first in situ observations that confirm satellite observations of high phytoplankton biomass and productivity in the Amundsen Sea. Moreover, the high phytoplankton productivity as a result of glacial input of DFe is the first evidence that melting glaciers have the potential to increase phytoplankton productivity and thereby CO2 uptake, resulting in a small negative feedback to anthropogenic CO2 emissions.
Resumo:
Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslo Fjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmark and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial surface sediment communities are affect by the water column, while the 40 cm communities are affect by local conditions within the sediment.
Resumo:
Pteropods are important organisms in high-latitude ecosystems, and they are expected to severely suffer from climate change in the near future. In this study, sedimentation patterns of two pteropod species, the polar Limacina helicina and the subarctic boreal L. retroversa, are presented. Time series data received by moored sediment traps at the Long-Term Ecological Research (LTER) Observatory HAUSGARTEN in eastern Fram Strait were analyzed during the years 2008 to 2012. Results were derived from four different deployment depths (~200, 1,250, 2,400, and 2,550 m) at two different sites (79° N, 04°20' E; 79°43' N, 04°30' E). A species-specific sedimentation pattern was present at all depths and at both sites showing maximal flux rates during September/October for L. helicina and in November/December for L. retroversa. The polar L. helicina was outnumbered by L. retroversa (55-99 %) at both positions and at all depths supporting the recently observed trend toward the dominance of the subarctic boreal species. The largest decrease in pteropod abundance occurred within the mesopelagic zone (~200-1,250 m), indicating loss via microbial degradation and grazing. Pteropod carbonate (aragonite) amounted up to ~75 % of the total carbonate flux at 200 m and 2-13 % of the aragonite found in the shallow traps arrived at the deep sediment traps (~160 m above the seafloor), revealing the significance of pteropods in carbonate export at Fram Strait. Our results emphasize the relevance and the need for continuation of long-term studies to detect and trace changes in pteropod abundances and community composition and thus in the vertical transport of aragonite.
Resumo:
Phospholipid fatty acids were measured in samples of 60°-130°C sediment taken from three holes at Site 1036 (Ocean Drilling Program Leg 169) to determine microbial community structure and possible community replacement at high temperatures. Five of six samples had similar concentrations of phospholipid fatty acids (2-6 pmol/g dry weight of sediment), and biomass estimates from these measurements compare favorably with direct microscopic counts, lending support to previous microscopic measures of deep sedimentary biomass. Very long-chain phospholipid fatty acids (21 to 30 carbons) were detected in the sediment and were up to half the total phospholipid fatty acid measured; they appear to increase in abundance with temperature, but their significance is not known. Community composition from lipid analysis showed that samples contained standard eubacterial membrane lipids but no detectable archaeal lipids, though archaea would be expected to dominate the samples at high temperatures. Cluster analysis of Middle Valley phospholipid fatty acid compositions shows that lipids in Middle Valley sediment samples are similar to each other at all temperatures, with the exception of very long-chain fatty acids. The data neither support nor deny a shift to a high-temperature microbial community in hot cores, so at the present time we cannot draw conclusions about whether the microbes observed in these hot sediments are active.
Resumo:
Microbial communities and their associated metabolic activity in marine sediments have a profound impact on global biogeochemical cycles. Their composition and structure are attributed to geochemical and physical factors, but finding direct correlations has remained a challenge. Here we show a significant statistical relationship between variation in geochemical composition and prokaryotic community structure within deep-sea sediments. We obtained comprehensive geochemical data from two gravity cores near the hydrothermal vent field Loki's Castle at the Arctic Mid-Ocean Ridge, in the Norwegian-Greenland Sea. Geochemical properties in the rift valley sediments exhibited strong centimeter-scale stratigraphic variability. Microbial populations were profiled by pyrosequencing from 15 sediment horizons (59,364 16S rRNA gene tags), quantitatively assessed by qPCR, and phylogenetically analyzed. Although the same taxa were generally present in all samples, their relative abundances varied substantially among horizons and fluctuated between Bacteria- and Archaea-dominated communities. By independently summarizing covariance structures of the relative abundance data and geochemical data, using principal components analysis, we found a significant correlation between changes in geochemical composition and changes in community structure. Differences in organic carbon and mineralogy shaped the relative abundance of microbial taxa. We used correlations to build hypotheses about energy metabolisms, particularly of the Deep Sea Archaeal Group, specific Deltaproteobacteria, and sediment lineages of potentially anaerobic Marine Group I Archaea. We demonstrate that total prokaryotic community structure can be directly correlated to geochemistry within these sediments, thus enhancing our understanding of biogeochemical cycling and our ability to predict metabolisms of uncultured microbes in deep-sea sediments.
Resumo:
The Whittard canyon is a branching submarine canyon on the Celtic continental margin, which may act as a conduit for sediment and organic matter (OM) transport from the European continental slope to the abyssal sea floor. In situ stable-isotope labelling experiments (JC36-042-Spre01; JC36-100-Spre01) were conducted in the eastern and western branches of the Whittard canyon testing short term (3 - 7 day) responses of sediment communities to deposition of nitrogen-rich marine and nitrogen-poor terrigenous phytodetritus. Isotopic labels were traced into faunal biomass and bulk sediments, and the bacterial polar lipid fatty acids (PLFAs). These data files provide the data on macrofaunal and bacterial uptake of the isotopically-labelled organic carbon and nitrogen, and macrofaunal community composition at the two stations within the Whittard canyon
Resumo:
Anthropogenic increases in the partial pressure of CO2 (pCO2) cause ocean acidification, declining calcium carbonate saturation states, reduced coral reef calcification and changes in the compositions of marine communities. Most projected community changes due to ocean acidification describe transitions from hard coral to non-calcifying macroalgal communities; other organisms have received less attention, despite the biotic diversity of coral reef communities. We show that the spatial distributions of both hard and soft coral communities in volcanically acidified, semi-enclosed waters off Iwotorishima Island, Japan, are related to pCO2 levels. Hard corals are restricted to non-acidified low- pCO2 (225 µatm) zones, dense populations of the soft coral Sarcophyton elegans dominate medium- pCO2 (831 µatm) zones, and both hard and soft corals are absent from the highest- pCO2 (1,465 µatm) zone. In CO2-enriched culture experiments, high- pCO2 conditions benefited Sarcophyton elegans by enhancing photosynthesis rates and did not affect light calcification, but dark decalcification (negative net calcification) increased with increasing pCO2. These results suggest that reef communities may shift from reef-building hard corals to non-reef-building soft corals under pCO2 levels (550-970 µatm) predicted by the end of this century, and that higher pCO2 levels would challenge the survival of some reef organisms.
Resumo:
Eight-month-old blocks of the coral Porites lobata colonized by natural Hawaiian euendolithic and epilithic communities were experimentally exposed to two different aqueous pCO2 treatments, 400 ppmv and 750 ppmv, for 3 months. The chlorophyte Ostreobium quekettii dominated communities at the start and at the end of the experiment (65-90%). There were no significant differences in the relative abundance of euendolithic species, nor were there any differences in bioeroded area at the surface of blocks (27%) between pCO2 treatments. The depth of penetration of filaments of O. quekettii was, however, significantly higher under 750 ppmv (1.4 mm) than under 400 ppmv (1 mm). Consequently, rates of carbonate dissolution measured under elevated pCO2 were 48% higher than under ambient pCO2 (0.46 kg CaCO3 dissolved m2/a versus 0.31 kg /m2/a). Thus, biogenic dissolution of carbonates by euendoliths in coral reefs may be a dominant mechanism of carbonate dissolution in a more acidic ocean.
Resumo:
This paper reports for the first time upon the effects of increasing CO2 concentrations on a natural phytoplankton assemblage in a tropical estuary (the Godavari River Estuary in India). Two short-term (5-day) bottle experiments were conducted (with and without nutrient addition) during the pre-monsoon season when the partial pressure of CO2 in the surface water is quite low. The results reveal that the concentrations of total chlorophyll, the phytoplankton growth rate, the concentrations of particulate organic matter, the photosynthetic oxygen evolution rates, and the total bacterial count were higher under elevated CO2 treatments, as compared to ambient conditions (control). delta13C of particulate organic matter (POM) varied inversely with respect to CO2, indicating a clear signature of higher CO2 influx under the elevated CO2 levels. Whereas, delta13CPOM in the controls indicated the existence of an active bicarbonate transport system under limited CO2 supply. A considerable change in phytoplankton community structure was noticed, with marker pigment analysis by HPLC revealing that cyanobacteria were dominant over diatoms as CO2 concentrations increased. A mass balance calculation indicated that insufficient nutrients (N, P and Si) might have inhibited diatomgrowth compared to cyanobacteria, regardless of increased CO2 supply. The present study suggests that CO2 concentration and nutrient supply could have significant effects on phytoplankton physiology and community composition for natural phytoplankton communities in this region. However, this work was conducted during a non-discharge period (nutrient-limited conditions) and the responses of phytoplankton to increasing CO2 might not necessarily be the same during other seasons with high physicochemical variability. Further investigation is therefore needed.
Resumo:
Calcification and growth of crustose coralline algae (CCA) are affected by elevated seawater pCO2 and associated changes in carbonate chemistry. However, the effects of ocean acidification (OA) on population and community-level responses of CCA have barely been investigated. We explored changes in community structure and population dynamics (size structure and reproduction) of CCA in response to OA. Recruited from an experimental flow-through system, CCA settled onto the walls of plastic aquaria and developed under exposure to one of three pCO2 treatments (control [present day, 389±6 ppm CO2], medium [753±11 ppm], and high [1267±19 ppm]). Elevated pCO2 reduced total CCA abundance and affected community structure, in particular the density of the dominant species Pneophyllum sp. and Porolithon onkodes. Meanwhile, the relative abundance of P. onkodes declined from 24% under control CO2 to 8.3% in high CO2 (65% change), while the relative abundance of Pneophyllum sp. remained constant. Population size structure of P. onkodes differed significantly across treatments, with fewer larger individuals under high CO2. In contrast, the population size structure and number of reproductive structures (conceptacles) per crust of Pneophyllum sp. was similar across treatments. The difference in the magnitude of the response of species abundance and population size structure between species may have the potential to induce species composition changes in the future. These results demonstrate that the impacts of OA on key coral reef builders go beyond declines in calcification and growth, and suggest important changes to aspects of population dynamics and community ecology.
Resumo:
Research so far has provided little evidence that benthic biogeochemical cycling is affected by ocean acidification under realistic climate change scenarios. We measured nutrient exchange and sediment community oxygen consumption (SCOC) rates to estimate nitrification in natural coastal permeable and fine sandy sediments under pre-phytoplankton bloom and bloom conditions. Ocean acidification, as mimicked in the laboratory by a realistic pH decrease of 0.3, significantly reduced SCOC on average by 60% and benthic nitrification rates on average by 94% in both sediment types in February (pre-bloom period), but not in April (bloom period). No changes in macrofauna functional community (density, structural and functional diversity) were observed between ambient and acidified conditions, suggesting that changes in benthic biogeochemical cycling were predominantly mediated by changes in the activity of the microbial community during the short-term incubations (14 days), rather than by changes in engineering effects of bioturbating and bio-irrigating macrofauna. As benthic nitrification makes up the gross of ocean nitrification, a slowdown of this nitrogen cycling pathway in both permeable and fine sediments in winter, could therefore have global impacts on coupled nitrification-denitrification and hence eventually on pelagic nutrient availability.
Resumo:
Ocean acidification is predicted to impact all areas of the oceans and affect a diversity of marine organisms. However, the diversity of responses among species prevents clear predictions about the impact of acidification at the ecosystem level. Here, we used shallow water CO2 vents in the Mediterranean Sea as a model system to examine emergent ecosystem responses to ocean acidification in rocky reef communities. We assessed in situ benthic invertebrate communities in three distinct pH zones (ambient, low, and extreme low), which differed in both the mean and variability of seawater pH along a continuous gradient. We found fewer taxa, reduced taxonomic evenness, and lower biomass in the extreme low pH zones. However, the number of individuals did not differ among pH zones, suggesting that there is density compensation through population blooms of small acidification-tolerant taxa. Furthermore, the trophic structure of the invertebrate community shifted to fewer trophic groups and dominance by generalists in extreme low pH, suggesting that there may be a simplification of food webs with ocean acidification. Despite high variation in individual species' responses, our findings indicate that ocean acidification decreases the diversity, biomass, and trophic complexity of benthic marine communities. These results suggest that a loss of biodiversity and ecosystem function is expected under extreme acidification scenarios.
Resumo:
Ocean acidification is expected to alter marine systems, but there is uncertainty about its effects due to the logistical difficulties of testing its large-scale and long-term effects. Responses of biological communities to increases in carbon dioxide can be assessed at CO2 seeps that cause chronic exposure to lower seawater pH over localised areas of seabed. Shifts in macroalgal communities have been described at temperate and tropical pCO2 seeps, but temporal and spatial replication of these observations is needed to strengthen confidence our predictions, especially because very few studies have been replicated between seasons. Here we describe the seawater chemistry and seasonal variability of macroalgal communities at CO2 seeps off Methana (Aegean Sea). Monitoring from 2011 to 2013 showed that seawater pH decreased to levels predicted for the end of this century at the seep site with no confounding gradients in Total Alkalinity, salinity, temperature or wave exposure. Most nutrient levels were similar along the pH gradient; silicate increased significantly with decreasing pH, but it was not limiting for algal growth at all sites. Metal concentrations in seaweed tissues varied between sites but did not consistently increase with pCO2. Our data on the flora are consistent with results from laboratory experiments and observations at Mediterranean CO2 seep sites in that benthic communities decreased in calcifying algal cover and increased in brown algal cover with increasing pCO2. This differs from the typical macroalgal community response to stress, which is a decrease in perennial brown algae and proliferation of opportunistic green algae. Cystoseira corniculata was more abundant in autumn and Sargassum vulgare in spring, whereas the articulated coralline alga Jania rubens was more abundant at reference sites in autumn. Diversity decreased with increasing CO2 regardless of season. Our results show that benthic community responses to ocean acidification are strongly affected by season.