61 resultados para Lighter lanthanides
Resumo:
We investigate the Logatchev Hydrothermal Field at the Mid-Atlantic Ridge, 14°45' N to constrain the calcium isotope hydrothermal flux into the ocean. During the transformation of seawater to a hydrothermal solution, the Ca concentration of pristine seawater ([Ca]_SW) increases from about 10 mM to about 32 mM in the hydrothermal fluid endmember ([Ca]_HydEnd) and thereby adopts a d44/40Ca_HydEnd of -0.95+/-0.07 per mil relative to seawater (SW) and a 87Sr/86Sr isotope ratio of 0.7034(4). We demonstrate that d44/40Ca_HydEnd is higher than that of the bedrock at the Logatchev field. From mass balance calculations, we deduce a d44/40Ca of -1.17+/-0.04 per mil (SW) for the host-rocks in the reaction zone and -1.45+/-0.05 per mil (SW) for the isotopic composition of the entire hydrothermal cell of the Logatchev field. The values are isotopically lighter than the currently assumed d44/40Ca for Bulk Earth of -0.92+/-0.18 per mil (SW) [Skulan J., DePaolo D. J. and Owens T. L. (1997) Biological control of calcium isotopic abundances in the global calcium cycle. Geochim. Cosmochim. Acta 61,(12) 2505-2510] and challenge previous assumptions of no Ca isotope fractionation between hydrothermal fluid and the oceanic crust [Zhu P. and Macdougall J. D. (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim. Cosmochim. Acta 62,(10) 1691-1698; Schmitt A. -D., Chabeaux F. and Stille P. (2003) The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth Planet. Sci. Lett. 6731, 1-16]. Here we propose that Ca isotope fractionation along the fluid flow pathway of the Logatchev field occurs during the precipitation of anhydrite. Two anhydrite samples from the Logatchev Hydrothermal Field show an average fractionation of about D44/40Ca = -0.5 per mil relative to their assumed parental solutions. Ca isotope ratios in aragonites from carbonate veins from ODP drill cores indicate aragonite precipitation directly from seawater at low temperatures with an average d44/40Ca of -1.54+/-0.08 per mil (SW). The relatively large fractionation between the aragonite precipitates and seawater in combination with their frequent abundance in weathered mafic and ultramafic rocks suggest a reconsideration of the marine Ca isotope budget, in particular with regard to ocean crust alteration.
Resumo:
An additional Heinrich ice-rafting event is identified between Heinrich events 5 and 6 in eight cores from the Labrador Sea and the northwest Atlantic Ocean. It is characterized by sediment rich in detrital carbonate (40% CaCO3) with high concentration of floating dropstones, high coarse-fraction (% > 150 µm) content, and has a sharp contact with the underlying but grades into the overlying hemipelagic sediment. It also shows lighter d18ONpl values, indicating freshening due to iceberg rafting and/or meltwater discharge. This event is correlated with Dansgaard-Oeschger event 14 and interpreted as an additional Heinrich event, H5a. The thickness of H5a in the Labrador Sea reaches up to 220 cm. This additional Heinrich event has also been reported in cores PS2644 and SO82-5 from the northern North Atlantic. With the recognition of H5a the temporal spacing between Heinrich events 1 to 6 becomes more uniform (~7 ka).
Resumo:
The Weddell Sea and the associated Filchner-Rønne Ice Shelf constitute key regions for global bottomwater production today. However, little is known about bottom-water production under different climate and icesheet conditions. Therefore, we studied core PS1795, which consists primarily of fine-grained siliciclastic varves that were deposited on contourite ridges in the southeastern Weddell Sea during the Last Glacial Maximum (LGM). We conducted high-resolution X-ray fluorescence (XRF) analysis and grain-size measurements with the RADIUS tool (Seelos and Sirocko, 2005, doi:10.1111/j.1365-3091.2005.00715.x) using thin sections to characterize the two seasonal components of the varves at sub-mm resolution to distinguish the seasonal components of the varves. Bright layers contain coarser grains that can mainly be identified as quartz in the medium-to-coarse silt grain size. They also contain higher amounts of Si, Zr, Ca, and Sr, as well as more ice-rafted debris (IRD). Dark layers, on the other hand, contain finer particles such as mica and clay minerals from the chlorite and illite groups. In addition, Fe, Ti, Rb, and K are elevated. Based on these findings as well as on previous analyses on neighbouring cores, we propose a model of enhanced thermohaline convection in front of a grounded ice sheet that is supported by seasonally variable coastal polynya activity during the LGM. Accordingly, katabatic (i.e. offshore blowing) winds removed sea ice from the ice edge, leading to coastal polynya formation. We suggest that glacial processes were similar to today with stronger katabatic winds and enhanced coastal polynya activity during the winter season. Under these conditions, lighter coarser-grained layers are likely glacial winter deposits, when brine rejection was increased, leading to enhanced bottom-water formation and increased sediment transport. Vice versa, darker finer-grained layers were then deposited during less windier season, mainly during summer, when coastal polynya activity was likely reduced.
Resumo:
Based on the stable isotopic analysis of planktonic and benthic foraminifers from Ocean Drilling Program Core 1148 of the northern South China Sea (SCS), Pliocene-Pleistocene isotope stratigraphy and events have been reconstructed. The benthic foraminiferal delta18O record shows that the Pacific intermediate water had a greater influence upon the SCS or the Pacific deep water above ~2600 m was warmer before ~3.2Ma than at present. After that, the benthic delta18O conspicuously increased during the ~3.2-2.5 Ma period, in correspondence to the formation of the Northern Hemisphere ice sheet, whereas the planktonic delta18O signal suggests a stepwise overall decrease of sea surface temperature during the ~2.2-0.9 Ma period. Compared to the equatorial Pacific records, the decrease in planktonic (Globigerinoides ruber) delta13C during the ~3.2-2.2 Ma period is particularly striking, suggesting that fertility of surface water increased noticeably. According to the modern delta13C distribution of G. ruber in the northern SCS, it is inferred that the East Asian winter monsoon strengthened during this interval. Afterwards, there were several conspicuous decreases of G. ruber delta13C at ~1.7, 1.3, 0.9, 0.45 and 0.15 Ma BP, that is, about every 0.4 Ma, suggesting that the East Asian winter monsoon became episodically stronger. This is confirmed by changes in relative abundance of planktonic foraminifer species Neogloboquadrina dutertrei, a typical East Asian winter monsoon proxy. The deepwater delta13C of the SCS is close to that of the Pacific, but lighter than that of the Atlantic, implying that the pattern of deep water originating mainly from the Atlantic and through the Pacific entering the SCS existed at least since the early Pliocene. After 1.4 Ma, the benthic delta13C signal decreased conspicuously but with a periodicity of ~100 ka, suggesting that the deep-water ventilation of the SCS was reduced, probably corresponding to a decrease of the North Atlantic Deep Water and/or further isolation of the SCS deep basin from the Pacific during glaciations.
Resumo:
The late Miocene carbon shift (~6.2 Myr) -a 0.5-1.0 per mil, d13C decrease in benthic and planktonic foraminifera- has been ascribed to changes in global inventory, deep-ocean circulation, and/or productivity. Cadmium, d13C, and nutrients in the ocean are linked; comparison of d13C and Cd/Ca yields circulation and chemical inventory information not available from either alone. We determined Cd/Ca ratios in late Miocene benthic foraminifera from DSDP Site 289. Results include: (1) late Miocene Pacific Cd/Ca values fall between those of late Quaternary Atlantic and Pacific benthic foraminifera; (2) there are no systematic Cd/Ca offsets between Cibicidoides kullenbergi, Cibicidoides wuellerstorfi and Uvigerina spp.; and (3) there is a very slight Cd/Ca change coincident with d13C. Cd/Ca, slightly higher in younger, isotopically lighter samples, exhibits a smaller increase than predicted if circulation were the primary cause of the carbon shift. The carbon shift may have been due to a long-term shift in the steady-state carbon isotope input or to a change in the sedimentation of organic carbon relative to calcium carbonate.
Resumo:
Secondary carbonate minerals were recovered within the basalts at both ODP Sites 768 and 770 in the Sulu and Celebes seas. Petrographic and X-ray diffraction analyses indicate that the carbonates are calcites. Other alteration products recognized in the thin sections are smectites, iron oxides, and gypsum. The 13C values of carbonates from both sites range from 1.6 per mil to 2.3 per mil, which are indicative of inorganic carbonate formation with no contributions from 13C-depleted sources such as oxidized organic carbon or methane. The oxygen isotopes at Site 770 range from 30.8 per mil to 31.6 per mil, which indicates a pervasive circulation of cold seawater (9° to 12°C) during alteration of the Celebes Sea basalts. In contrast, carbonates associated with Site 768 basalts have less positive d18O values (21.0 per mil to 27.3 per mil). A lighter 18O isotopic signature indicates the formation of secondary calcite at either higher temperatures or in a system closed to seawater. The rapidly deposited pyroclastic flows at Site 768 would have limited water access to the crust very soon after its formation, which leads us to speculate that the carbonates in the Sulu Sea basalts were formed by isotopically modified fluids resulting from basalt alteration in a closed system.
Resumo:
Size analyses were performed on pelagic sediments from Core 599-3, which exhibited paleontologic and lithologic evidence of reworking. The results show that darker, transported layers above sharp contacts are 0.33 phi coarser than the underlying lighter, in situ layers. The reworking is of unknown origin, but it coincides with periods of enhanced bottom currents and heightened tectonic activity during the latest Miocene.
Resumo:
Oceanographic changes in the western equatorial Pacific during the past 6 m.y. are inferred from carbon isotopic analyses of planktonic and benthic foraminifers from Ontong Java Plateau (DSDP Site 586). Sample spacing is 1.5 m (ca. 35,000-75,000 yr). An overall trend of d13C toward lighter values is evident for the last 5 m.y. in all four foraminiferal taxa analyzed (G. sacculifer, Pulleniatina, P. wuellerstorfi, and O. umbonatus). This trend is interpreted as an enrichment of the global ocean with 12C, because of the addition of carbon from organic carbon reservoirs (or lack of removal of carbon to such reservoirs), as a consequence of an overall drop in sea level. Differences between shallow- and deep-water d13C decrease slightly during this time interval, suggesting a moderate drop in productivity. This drop is not sufficient to explain the drop in sedimentation rate, however, much of which apparently must be ascribed to winnowing effects. A marked convergence in the d13C values of planktonic taxa exists within the last 2 m.y. We propose that this convergence indicates nutrient depletion in thermocline waters, caused by the vigorous removal of phosphate in marginal upwelling regions, or by the stripping of intermediate waters in their source regions. No large shifts are seen in the carbon isotope record of the last 6 m.y., in contrast to the oxygen isotope record. Some indication of cyclicity is present, with a period between 0.5 and 1.0 m.y. (especially in the earlier portion of the record).
Resumo:
A new generalized schematic map of distribution of recent sediments within Eurasian Arctic shelves is considered. The sediments have accumulated as a result of interaction of various factors and processes specific to high latitudes. They include input of terrigenous material by modern glaciers, ice transport, thermal abrasion, sedimentation controlled by many years of ice cover, and others. Characteristic regularity is marked over Arctic shelves: in seas with heavier ice cover, the most fine-grained deposits are distributed, they contain minimum amount of coarse-grained ice rafted debris; in seas with lighter ice cover mosaic distribution of various types of sediments is observed. Composition of surface sediments from the Arctic shelves corresponds to a relatively cool stage of the modern interglacial period. In the 21-st century a new warming is expected.
Resumo:
Iron stable isotope signatures (d56Fe) in hemolymph (bivalve blood) of the Antarctic bivalve Laternula elliptica were analyzed by Multiple Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) to test whether the isotopic fingerprint can be tracked back to the predominant sources of the assimilated Fe. An earlier investigation of Fe concentrations in L. elliptica hemolymph suggested that an assimilation of reactive and bioavailable Fe (oxyhydr)oxide particles (i.e. ferrihydrite), precipitated from pore water Fe around the benthic boundary, is responsible for the high Fe concentration in L. elliptica (Poigner et al., 2013, doi:10.1016/j.ecss.2013.10.027). At two stations in Potter Cove (King George Island, Antarctica) bivalve hemolymph showed mean d56Fe values of -1.19 ± 0.34 per mil and -1.04 ± 0.39 per mil, respectively, which is between 0.5 per mil and 0.85 per mil lighter than the pool of easily reducible Fe (oxyhydr)oxides of the surface sediments (-0.3 per mil to -0.6 per mil). This is in agreement with the enrichment of lighter Fe isotopes at higher trophic levels, resulting from the preferential assimilation of light isotopes from nutrition. Nevertheless, d56Fe hemolymph values from both stations showed a high variability, ranging between -0.21 per mil (value close to unaltered/primary Fe(oxyhydr)oxide minerals) and -1.91 per mil (typical for pore water Fe or diagenetic Fe precipitates), which we interpret as a "mixed" d56Fe signature caused by Fe assimilation from different sources with varying Fe contents and d56Fe values. Furthermore, mass dependent Fe fractionation related to physiological processes within the bivalve cannot be ruled out. This is the first study addressing the potential of Fe isotopes for tracing back food sources of bivalves.
Resumo:
Carbon in lipids separated from organic matter of fish and marine mammal bones from bottom of the Pacific and Atlantic oceans has d13C values ranging from -21.6 to -25.8 per mil and is isotopically lighter than that in lipids and total organic matter of host sediments. During fossilization of organic phosphate carbon isotope composition of bound lipids of fish bone becomes lighter and that of bones of mammals becomes heavier, possibly as a result of metabolisms of these organisms and composition of phospholipids in them.
Resumo:
Silicon isotopic signatures (d30Si) of water column silicic acid (Si(OH)4) were measured in the Southern Ocean, along a meridional transect from South Africa (Subtropical Zone) down to 57° S (northern Weddell Gyre). This provides the first reported data of a summer transect across the whole Antarctic Circumpolar Current (ACC). d30Si variations are large in the upper 1000 m, reflecting the effect of the silica pump superimposed upon meridional water transfer across the ACC: the transport of Antarctic surface waters northward by a net Ekman drift and their convergence and mixing with warmer upper-ocean Si-depleted waters to the north. Using Si isotopic signatures, we determine different mixing interfaces: the Antarctic Surface Water (AASW), the Antarctic Intermediate Water (AAIW), and thermoclines in the low latitude areas. The residual silicic acid concentrations of end-members control the d30Si alteration of the mixing products and with the exception of AASW, all mixing interfaces have a highly Si-depleted mixed layer end-member. These processes deplete the silicic acid AASW concentration northward, across the different interfaces, without significantly changing the AASW d30Si composition. By comparing our new results with a previous study in the Australian sector we show that during the circumpolar transport of the ACC eastward, the d30Si composition of the silicic acid pools is getting slightly, but significantly lighter from the Atlantic to the Australian sectors. This results either from the dissolution of biogenic silica in the deeper layers and/or from an isopycnal mixing with the deep water masses in the different oceanic basins: North Atlantic Deep Water in the Atlantic, and Indian Ocean deep water in the Indo-Australian sector. This isotopic trend is further transmitted to the subsurface waters, representing mixing interfaces between the surface and deeper layers. Through the use of d30Si constraints, net biogenic silica production (representative of annual export), at the Greenwich Meridian is estimated to be 5.2 ± 1.3 and 1.1 ± 0.3 mol Si/m**2 for the Antarctic Zone and Polar Front Zone, respectively. This is in good agreement with previous estimations. Furthermore, summertime Si-supply into the mixed layer of both zones, via vertical mixing, is estimated to be 1.6 ± 0.4 and 0.1 ± 0.5 mol Si/m**2, respectively.
Resumo:
Microchemical analyses of rare earth element (REE) concentrations and Sr and S isotope ratios of anhydrite are used to identify sub-seafloor processes governing the formation of hydrothermal fluids in the convergent margin Manus Basin, Papua New Guinea. Samples comprise drill-core vein anhydrite and seafloor massive anhydrite from the PACMANUS (Roman Ruins, Snowcap and Fenway) and SuSu Knolls (North Su) active hydrothermal fields. Chondrite-normalized REE patterns in anhydrite show remarkable heterogeneity on the scale of individual grains, different from the near uniform REEN patterns measured in anhydrite from mid-ocean ridge deposits. The REEN patterns in anhydrite are correlated with REE distributions measured in hydrothermal fluids venting at the seafloor at these vent fields and are interpreted to record episodes of hydrothermal fluid formation affected by magmatic volatile degassing. 87Sr/86Sr ratios vary dramatically within individual grains between that of contemporary seawater and that of endmember hydrothermal fluid. Anhydrite was precipitated from a highly variable mixture of the two. The intra-grain heterogeneity implies that anhydrite preserves periods of contrasting hydrothermal versus seawater dominant near-seafloor fluid circulation. Most sulfate d34S values of anhydrite cluster around that of contemporary seawater, consistent with anhydrite precipitating from hydrothermal fluid mixed with locally entrained seawater. Sulfate d34S isotope ratios in some anhydrites are, however, lighter than that of seawater, which are interpreted as recording a source of sulfate derived from magmatic SO2 degassed from underlying felsic magmas in the Manus Basin. The range of elemental and isotopic signatures observed in anhydrite records a range of sub-seafloor processes including high-temperature hydrothermal fluid circulation, varying extents of magmatic volatile degassing, seawater entrainment and fluid mixing. The chemical and isotopic heterogeneity recorded in anhydrite at the inter- and intra-grain scale captures the dynamics of hydrothermal fluid formation and sub-seafloor circulation that is highly variable both spatially and temporally on timescales over which hydrothermal deposits are formed. Microchemical analysis of hydrothermal minerals can provide information about the temporal history of submarine hydrothermal systems that are variable over time and cannot necessarily be inferred only from the study of vent fluids.
Resumo:
Contemporary cnidarian-algae symbioses are challenged by increasing CO2 concentrations (ocean warming and acidification) affecting organisms' biological performance. We examined the natural variability of carbon and nitrogen isotopes in the symbiotic sea anemone Anemonia viridis to investigate dietary shifts (autotrophy/heterotrophy) along a natural pCO2 gradient at the island of Vulcano, Italy. delta 13C values for both algal symbionts (Symbiodinium) and host tissue of A. viridis became significantly lighter with increasing seawater pCO2. Together with a decrease in the difference between delta 13C values of both fractions at the higher pCO2 sites, these results indicate there is a greater net autotrophic input to the A. viridis carbon budget under high pCO2 conditions. delta 15N values and C/N ratios did not change in Symbiodinium and host tissue along the pCO2 gradient. Additional physiological parameters revealed anemone protein and Symbiodinium chlorophyll a remained unaltered among sites. Symbiodinium density was similar among sites yet their mitotic index increased in anemones under elevated pCO2. Overall, our findings show that A. viridis is characterized by a higher autotrophic/heterotrophic ratio as pCO2 increases. The unique trophic flexibility of this species may give it a competitive advantage and enable its potential acclimation and ecological success in the future under increased ocean acidification.
Resumo:
High-, i.e. 15-140-yr-resolution climate records from sediment cores 23071, 23074, and PS2644 from the Nordic Seas were used to recon:;truct changes in the surface and deep water circulation during marine isotope stages 1-5.1, i.e. the last 82 000 yr. From this the causal links between the paleoceanographic signals and the Dansgaard-Oeschger events 1-21 revealed in 0180-ice-core records from Greenland were determined. The stratigraphy of the cores is based on the planktic 0180 curves, the minima of which were directly correlated with the GISP2-0180 record, numerous AMS 14C ages, and some ash layers. The planktic d18O and dl3C curves of all three cores reveal numerous meltwater events, the most pronounced of which were assigned to the Heinrich events 1-6. The meltwater events, among other things also accompanied by cold sea surface temperatures and high IRD concentration, correlate with the stadial phases of the Dansgaard-Oeschger cycles and in the western Iceland Sea also to colder periods or abrupt drops in 0180 within a few longer interstadials. Besides being more numerous, the meltwater events also show isotope values lighter in the Iceland Sea than in the central Norwegian Sea, especially if compared to core 23071. This implies a continuous inflow of relative warm Atlantic water into the Norwegian Sea and a cyclonic circulation regime.