73 resultados para HUMAN CU,ZN-SUPEROXIDE DISMUTASE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shipboard examination of volcanic and sedimentary strata at Site 786 suggested that at least four types of breccias are present: flow-top breccias, associated with cooling and breakup on the upper surface of lava flows; autobreccias, formed by in-situ alteration at the base of flows; fault-gouge breccias; and true sedimentary breccias derived from weathering and erosion of underlying flows. It is virtually impossible to assess the origin of breccia matrix by textural and mineralogical analyses alone. However, it is fundamental for our understanding of breccia provenance to determine the source component of the matrix material. Whether the matrix is uniquely clastderived can be determined by geochemical fingerprinting. Trace elements that are immobile during weathering and alteration do not change their relative abundances. A contribution to the matrix from any source with an immobile trace element signature different from that of the clasts would appear as a perturbation of the trace element signature of the matrix. Trace element analysis of bulk samples from clasts and matrix material in individual breccia units was undertaken in a fashion similar to that used by Brimhall and Dietrich (1987, doi:10.1016/0016-7037(87)90070-6) in analyzing soil provenance: (1) to help distinguish between sedimentary and volcanic breccias, (2) to determine the degree of mixing and depth of erosion in sedimentary breccias, and (3) to analyze the local provenance of the individual breccia components (matrix and clasts). The following elements were analyzed by X-ray fluorescence (XRF): Rb, Sr, Ba, U, Zr, Cu, Zn, Ti, Cr, and V. Of these elements, Zr and Ti probably exhibit truly immobile behavior (Humphris and Thompson, 1978, doi:10.1016/0016-7037(78)90222-3 ). The remaining elements are useful as a reference for the extent of compositional change during the formation of matrix material (Brimhall and Dietrich, 1987, doi:10.1016/0016-7037(87)90070-6).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-situ proton-microprobe analyses are presented for glasses, plagioclases, pyroxenes, olivines, and spinels in eleven samples from Sites 834-836, 839, and 841 (vitrophyric rhyolite), plus a Tongan dacite. Elements analyzed are Mn, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Pb, and Sn (in spinels only). The data are used to calculate two sets of partition coefficients, one set based on the ratio of element in mineral/element in coexisting glass. The second set of coefficients, thought to be more robust, is corrected by application of the Rayleigh fractionation equations, which requires additional use of modal data. Data are presented for phenocryst core-rim phases and microphenocryst-groundmass phases from a few samples. Comparison with published coefficients reveals an overall consistency with those presented here, but with some notable anomalies. Examples are relatively high Zr values for pyroxenes and abnormally low Mn values in olivines and clinopyroxenes from Site 839 lavas. Some anomalies may reflect kinetic effects, but interpretation of the coefficients is complicated, especially in olivines from Sites 836 and 839, by possible crystal-liquid disequilibrium resulting from mixing processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bündnerschiefer of the Swiss-Italian Alps is a large sedimentary complex deposited on the Piemonte-Liguria and Valais oceans and associated continental margins from the upper Jurassic to Eocene. It is made of a large variety of sequences associated or not with an ophiolitic basement. The Bündnerschiefer makes an accretionary prism that developed syn-tectonically from the onset of alpine subduction, and it records orogenic metamorphism following episodes of HP metamorphism. The Bündnerschiefer shares important similarities with the Otago schists of New Zealand and with the Wepawaug schists of Connecticut, both of which form accretionary prisms and have an orogenic metamorphic imprint. With the aim of testing the hypothesis of mobility of chemical components as a function of metamorphic grade, in this work I present fifty-five bulk chemical analyses of various lithological facies of the Bündnerschiefer collected along the well-studied field gradient of the Lepontine dome of Central Switzerland, in the Prättigau half window of East Switzerland, and in the Tsaté Nappe of Valle d'Aosta (Italy). The dataset includes the concentration of major components, large ion lithophile elements (Rb, Sr, Ba, Cs), high field strength elements (Zr, Ti, Nb, Th, U, Ta, Hf), fluid-mobile light elements (B, Li), volatiles (CO2, S), REEs, and Y, V, Cr, Co, Sn, Pb, Cu, Zn, Tl, Sb, Be, and Au. These data are compared against the compositions of the global marine sediment reservoir, typical crustal reservoirs, and against the previously measured compositions of Otago and Wepawaug schists. Results reveal that, irrespective of their metamorphic evolution, the bulk chemical compositions of orogenic metasediments are characterized by mostly constant compositional ratios (e.g., K2O/Al2O3, Ba/Al2O3, Sr/CaO, etc.), whose values in most cases are undistinguishable from those of actual marine sediments and other crustal reservoirs. For these rocks, only volatile concentrations decrease dramatically as a function of metamorphic temperature, and significant deviations from the reservoir signatures are evident for SiO2, B, and Li. These results are interpreted as an indication of residual enrichment in the sediments, a process taking place during syn-metamorphic dehydration from the onset of metamorphism in a regime of chemical immobility. Residual enrichment increased the absolute concentrations of the chemical components of these rocks, but did not modify significantly their fundamental ratios. This poor compositional modification of the sediments indicates that orogenic metamorphism in general does not promote significant mass transfer from accretionary prisms. In contrast, mass transfer calculations carried out in a shear zone crosscutting the Bündnerschiefer shows that significant mass transfer occurs within these narrow zones, resulting in gains of H2O, SiO2, Al2O3, K2O, Ba, Y, Rb, Cu, V, Tl, Mo, and Ce during deformation and loss of Na2O, CO2, S, Ni, B, U, and Pb from the rock. These components were presumably transported by an aquo-carbonic fluid along the shear zone. These distinct attitudes to mobilize chemical elements from orogenic sediments may have implications for a potentially large number of geochemical processes in active continental margins, from the recycling of chemical components at plate margins to the genesis of hydrothermal ore deposits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediments from immediately above basalt basement and from between sections of basalt recovered from Deep Sea Drilling Project Legs 5 and 63 were analyzed by atomic absorption spectroscopy for Mg, Al, Si, Ca, Mn, Fe, Co, Ni, Cu, Zn, and Ba. All of these sediments showed enrichment in Fe and Mn over values typical of detritus supplied to the northeastern Pacific Ocean. X-ray diffractometry and differential chemical leaching indicate that up to 50% of the sediment, by weight, is in amorphous phases and that these phases are rich in Mn, Co, Cu, Ni, and Zn. Multivariate statistical analysis and normative partitioning of the chemical data indicate that much of the excess Fe and other transition elements in the sediment originate from hydrothermal sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ocean quahog, Arctica islandica is the longest-lived non-colonial animal known to science. A maximum individual age of this bivalve of 405 years has been found in a population off the north western coast of Iceland. Conspicuously shorter maximum lifespan potentials (MLSPs) were recorded from other populations of A. islandica in European waters (e.g. Kiel Bay: 30 years, German Bight: 150 years) which experience wider temperature and salinity fluctuations than the clams from Iceland. The aim of my thesis was to identify possible life-prolonging physiological strategies in A. islandica and to examine the modulating effects of extrinsic factors (e.g. seawater temperature, food availability) and intrinsic factors (e.g. species-specific behavior) on these strategies. Burrowing behavior and metabolic rate depression (MRD), tissue-specific antioxidant and anaerobic capacities as well as cell-turnover (= apoptosis and proliferation) rates were investigated in A. islandica from Iceland and the German Bight. An inter-species comparison of the quahog with the epibenthic scallop Aequipecten opercularis (MLSP = 8-10 years) was carried out in order to determine whether bivalves with short lifespans and different lifestyles also feature a different pattern in cellular maintenance and repair. The combined effects of a low-metabolic lifestyle, low oxidative damage accumulation, and constant investment into cellular protection and tissue maintenance, appear to slow-down the process of physiological aging in A. islandica and to afford the extraordinarily long MLSP in this species. Standard metabolic rates were lower in A. islandica when compared to the shorter-lived A. opercularis. Furthermore, A. islandica regulate mantle cavity water PO2 to mean values < 5 kPa, a PO2 at which the formation of reactive oxygen species (ROS) in isolated gill tissues of the clams was found to be 10 times lower than at normoxic conditions (21 kPa). Burrowing and metabolic rate depression (MRD) in Icelandic specimens were more pronounced in winter, possibly supported by low seawater temperature and food availability, and seem to be key energy-saving and life-prolonging parameters in A. islandica. The signaling molecule nitric oxide (NO) may play an important role during the onset of MRD in the ocean quahog by directly inhibiting cytochome-c-oxidase at low internal oxygenation upon shell closure. In laboratory experiments, respiration of isolated A. islandica gills was completely inhibited by chemically produced NO at low experimental PO2 <= 10 kPa. During shell closure, mantle cavity water PO2 decreased to 0 kPa for longer than 24 h, a state in which ROS production is supposed to subside. Compared to other mollusk species, onset of anaerobic metabolism is late in A. islandica in the metabolically reduced state. Increased accumulation of the anaerobic metabolite succinate was initially detected in the adductor muscle of the clams after 3.5 days under anoxic incubation or in burrowed specimens. A ROS-burst was absent in isolated gill tissue of the clams following hypoxia (5 kPa)-reoxygenation (21 kPa). Accordingly, neither the activity of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), nor the specific content of the ROS-scavenger glutathione (GSH) was enhanced in different tissues of the ocean quahog after 3.5 days of self-induced or forced hypoxia/anoxia to prepare for an oxidative burst. While reduced ROS formation compared to routine levels lowers oxidative stress during MRD and also during surfacing, the general preservation of high cellular defense and the efficient removal and replacement of damaged cells over lifetime seem to be of crucial importance in decelerating the senescent decline in tissues of A. islandica. Along with stable antioxidant protection over 200 years of age, proliferation rates and apoptosis intensities in most investigated tissues of the ocean quahog were low, but constant over 140 years of age. Accordingly, age-dependent accumulations of protein and lipid oxidation products are lower in A. islandica tissues when compared to the shorter-lived bivalve A. opercularis. The short-lived swimming scallop is a model bivalve species representing the opposite life and aging strategy to A. islandica. In this species permanently high energy throughput, reduced investment into antioxidant defense with age, and higher accumulation of oxidation products are met by higher cell turnover rates than in the ocean quahog. The only symptoms of physiological change over age ever found in A. islandica were decreasing cell turnover rates in the heart muscle over a lifetime of 140 years. This may either indicate higher damage levels and possibly ongoing loss of functioning in the heart of aging clams, or, the opposite, lower rates of cell damage and a reduced need for cell renewal in the heart tissue of A. islandica over lifetime. Basic physiological capacities of different A. islandica populations, measured at controlled laboratory conditions, could not explain considerable discrepancies in population specific MLSPs. For example, levels of tissue-specific antioxidant capacities and cell turnover rates were similarly high in individuals from the German Bight and from Iceland. Rather than genetic differences, the local impacts of environmental conditions on behavioral and physiological traits in the ocean quahog seem to be responsible for differences in population-specific MLSPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnitude and the chronology of anthropogenic impregnation by Hg and other trace metals of environmental concern (V, Cr, Ni, Cu, Zn, Ag, Cd and Pb, including its stable isotopes) in the sediments are determined at the DYFAMED station, a site in the Ligurian Sea (Northwestern Mediterranean) chosen for its supposed open-sea characteristics. The DYFAMED site (VD) is located on the right levee of the Var Canyon turbidite system, at the end of the Middle Valley. In order to trace the influence of the gravity current coming from the canyon on trace metal distribution in the sediment, we studied an additional sediment core (VA) from a terrace of the Var Canyon, and material collected in sediment traps at the both sites at 20 m above sea bottom. The patterns of Hg and other trace element distribution profiles are interpreted using stable Pb isotope ratios as proxies for its sources, taking into account the sedimentary context (turbidites, redox conditions, and sedimentation rates). Major element distributions, coupled with the stratigraphic examination of the sediment cores point out the high heterogeneity of the deposits at VA, and major turbiditic events at both sites. At the DYFAMED site, we observed direct anthropogenic influence in the upper sediment layer (<2 cm), while on the Var Canyon site (VA), the anthropization concerns the whole sedimentary column sampled (19 cm). Turbiditic events superimpose their specific signature on trace metal distributions. According to the 210Pbxs-derived sedimentation rate at the DYFAMED site (0.4 mm yr-1), the Hg-enriched layer of the top core corresponds to the sediment accumulation of the last 50 years, which is the period of the highest increase in Hg deposition on a global scale. With the hypothesis of the absence of significant post-depositional redistribution of Hg, the Hg/C-org ratio changes between the surface and below are used to estimate the anthropogenic contribution to the Hg flux accumulated in the sediment. The Hg enrichment, from pre-industrial to the present time is calculated to be around 60%, consistent with estimations of global Hg models. However, based on the chemical composition of the trapped material collected in sediment traps, we calculated that epibenthic mobilization of Hg would reach 73%. Conversely, the Cd/C-org ratio decreases in the upper 5 cm, which may reflect the recent decrease of atmospheric Cd inputs or losses due to diagenetic processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Red-brown dolomitic claystones overlay the Marsili Basin basaltic basement at ODP Site 650. Sequential leaching experiments reveal that most of the elements considered to have a hydrothermal or hydrogenous origin in a marine environment, such as Fe, Cu, Zn, Pb, Co, Ni, are present mainly in the aluminosilicate fraction of the dolomitic claystones. Their vertical distribution, content and partitioning chemistry of trace elements, and REE patterns suggest enhanced terrigenous input during dolomite formation, but no significant hydrothermal influence from the underlying basaltic basement. Positive correlations in the C and O isotopes in the dolomites reflect complex conditions during the dolomitization. The stable isotopes can be controlled in part by temperature variations during the dolomitization. Majority of the samples, however, form a trend that is steeper than expected for only temperature control on the C and O isotopes. The latter indicates possible isotopic heterogeneity in the proto-carbonate that can be related to arid climatic conditions during the formation of the basal dolomitic claystones. In addition, the dolostones stable isotopic characteristics can be influenced by diagenetic release of heavier delta18O from clay dehydration and/or alteration of siliciclastic material. Strontium and Pb isotopic data reveal that the non-carbonate fraction, the "dye" of the dolomitic claystones, is controlled by Saharan dust (75%-80%) and by material with isotopic characteristics similar to the Aeolian Arc volcanoes (20%-25%). The non-carbonate fraction of the calcareous ooze overlying the dolomitic claystones has a Sr and Pb isotopic composition identical to that of the dolomitic claystones, indicating that no change in the input sources to the sedimentary basin occurred during and after the dolomitization event. Combination of climato-tectonic factors most probably resulted in suitable conditions for dolomitization in the Marsili and the nearby Vavilov Basins. The basal dolomitic claystone sequence was formed at the initiation of the opening of the Marsili Basin (~2 Ma), which coincided with the consecutive glacial stage. The glaciation caused arid climate and enhanced evaporation that possibly contributed to the stable isotope variations in the proto-carbonate. The conductive cooling of the young lithosphere produced high heat flow in the region, causing low-temperature passive convection of pore waters in the basal calcareous sediment. We suggest that this pumping process was the major dolomitization mechanism since it is capable of driving large volumes of seawater (the source of Mg2+) through the sediment. The red-brown hue of the dolomitic claystones is terrigenous contribution of the glacially induced high eolian influx and was not hydrothermally derived from the underlying basaltic basement. The detailed geochemical investigation of the basal dolomitic sequence indicates that the dolomitization was most probably related to complex tectono-climatic conditions set by the initial opening stages of the Marsili Basin and glaciation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thirty-eight samples from DSDP Sites 549 to 551 were analyzed for major and minor components and trace element abundances. Multivariate statistical analysis of geochemical data groups the samples into two major classes: an organic-carbon- rich group (> 1% TOC) containing high levels of marine organic matter and certain trace elements (Cu, Zn, V, Ni, Co, Ba, and Cr) and an organic-carbon-lean group depleted in these components. The greatest organic and trace metal enrichments occur in the uppermost Albian to Turanian sections of Sites 549 to 551. Carbon-isotopic values of bulk carbonate for the middle Cenomanian section of Site 550 (2.35 to 2.70 per mil) and the upper Cenomanian-Turonian sections of Sites 549 (3.35 to 4.47 per mil) and 551 (3.13 to 3.72 per mil) are similar to coeval values reported elsewhere in the region. The relatively heavy d13C values from Sites 549 and 551 indicate that this interval was deposited during the global "oceanic anoxic event" that occurred at the Cenomanian/Turonian boundary. Variation in the d18O of bulk carbonate for Section 550B-18-1 of middle Cenomanian age suggests that paleosalinity and/or paleotemperature variations may have occurred concurrently with periodic anoxia at this site. Climatically controlled increases in surface-water runoff may have caused surface waters to periodically freshen, resulting in stable salinity stratification

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primary chemical heterogeneity in the sheeted dike complex in Deep Sea Drilling Project Hole 504B makes these rocks unsuitable for conventional mass balance calculations in determining element mobility associated with hydrothermal alteration. Due to the original heterogeneity and variable degrees of fractionation in the dikes, an appropriate reference sample on which calculations can be based is difficult to find. Therefore, the use of incompatible element ratios is developed to evaluate geochemical changes during alteration(s). For example, on a Zr/Yb-La/Yb plot, scatter along a straight line suggests tapping of a variably depleted mantle source and deviation from the line suggests element mobility (gain or loss). Using this method, our data indicates that the hydrothermal evolution of the sheeted dike complex was accompanied by significant loss of Cu, Zn, and Ti and some loss of La. The sheeted dike complex has low platinum group element (PGE) concentrations and steep PGE patterns, typical of mid-ocean ridge basalts (MORBs) on the global scale. We propose that the unusual PGE patterns of MORBs cannot be entirely generated by a partial melting and sulfide segregation model; instead, these patterns in part must have been inherited from their mantle source. The Au data show no evidence for mobilization during hydrothermal alteration of the dikes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Live-imaging techniques (LIT) utilize target-specific fluorescent dyes to visualize biochemical processes using confocal and multiphoton scanning microscopy, which are increasingly employed as non-invasive approach to physiological in-vivo and ex-vivo studies. Here we report application of LIT to bivalve gills for ex-vivo analysis of gill physiology and mapping of reactive oxygen (ROS) and nitrogen (RNS) species formation in the living tissue. Our results indicate that H2O2, HOO. and ONOO- radicals (assessed through C-H2DFFDA staining) are mainly formed within the blood sinus of the filaments and are likely to be produced by hemocytes as defense against invading pathogens. The oxidative damage in these areas is controlled by enhanced CAT (catalase) activities recorded within the filaments. The outermost areas of the ciliated epithelial cells composing the filaments, concentrated the highest mitochondrial densities (MTK Deep Red 633 staining) and the most acidic pH values (as observed with ageladine-a). These mitochondria have low (depolarized) membrane potentials (D psi m) (JC-1 staining), suggesting that the high amounts of ATP required for ciliary beating may be in part produced by non-mitochondrial mechanisms, such as the enzymatic activity of an ATP-regenerating kinase. Nitric oxide (NO, DAF-2DA staining) produced in the region of the peripheral mitochondria may have an effect on mitochondrial electron transport and possibly cause the low membrane potential. High DAF-2DA staining was moreover observed in the muscle cells composing the wall of the blood vessels where NO may be involved in regulating blood vessel diameter. On the ventral bend of the gills, subepithelial mucus glands (SMG) contain large mucous vacuoles showing higher fluorescence intensities for O2.- (DHE staining) than the rest of the tissue. Given the antimicrobial properties of superoxide, release of O2.- into the mucus may help to avoid the development of microbial biofilms on the gill surface. However, cells of the ventral bends are paying a price for this antimicrobial protection, since they show significantly higher oxidative damage, according to the antioxidant enzyme activities and the carbonyl levels, than the rest of the gill tissue. This study provides the first evidence that one single epithelial cell may contain mitochondria with significantly different membrane potentials. Furthermore, we provide new insight into ROS and RNS formation in ex-vivo gill tissues which opens new perspectives for unraveling the different ecophysiological roles of ROS and RNS in multifunctional organs such as gills.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed major- and trace-element chemistry is presented for 41 sediment samples from DSDP Site-223 borehole cores. A marked change in chemical (and mineralogical) character is shown at the end of the Early Miocene Epoch which relates to tectonic events and associated changes in sedimentary regime. Enrichment in the contents of such elements as Mg, Cr and Ni compared with average values for fine-grained sediments occurs throughout the sequence and is particularly marked in the upper group of samples. A basic-ultrabasic provenance is suggested - the Oman ophiolites. Leaching with combined acid-reducing agent indicated typical lithogenous-character ordering for the elements and emphasised the enrichment of Mg, Cr, Ni (and Li, Cu, Zn, Pb, Fe and Ti) over values for near-shore muds and terrigenous material. Factor analysis on the bulk chemical data identifies the main lithogenous and biogenous components, subdividing the latter. It separates the upper and lower group of chemically dissimilar sediments and delineates a Mn-hydroxide phase. It also shows the essentially independent roles of Na, Ba and P.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antarctic krill (Euphausia superba) from South Georgia comprise one of the most northern and abundant krill stocks. South Georgia waters are undergoing rapid warming, as a result of climate change, which in turn could alter the oxygen concentration of the water. We investigated gene expression in Antarctic krill related to aerobic metabolism, antioxidant defence, and heat-shock response under severe (2.5% O2 saturation or 0.6 kPa) and threshold (20% O2 saturation or 4 kPa) hypoxia exposure compared to in situ levels (normoxic; 100% O2 saturation or 21 kPa). Biochemical metabolic and oxidative stress indicators complemented the genic expression analysis to detect in vivo signs of stress during the hypoxia treatments. Expression levels of the genes citrate synthase (CS), mitochondrial manganese superoxide dismutase (SODMn-m) and one heat-shock protein isoform (E) were higher in euphausiids incubated 6 h at 20% O2 saturation than in animals exposed to control (normoxic) conditions. All biochemical antioxidant defence parameters remained unchanged among treatments. Levels of lipid peroxidation were raised after 6 h of severe hypoxia. Overall, short-term exposure to hypoxia altered mitochondrial metabolic and antioxidant capacity, but did not induce anaerobic metabolism. Antarctic krill are swarming organisms and may experience short periods of hypoxia when present in dense swarms. A future, warmer Southern ocean, where oxygen saturation levels are decreased, may result in smaller, less dense swarms as they act to avoid greater levels of hypoxia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicic Fe-Ti-oxide magmatic series was the first recognized in the Sierra Leone axial segment of the Mid-Atlantic Ridge near 6°N. The series consists of intrusive rocks (harzburgites, lherzolites, bronzitites, norites, gabbronorites, hornblende Fe-Ti-oxide gabbronorites and gabbronorite-diorites, quartz diorites, and trondhjemites) and their subvolcanic (ilmenite-hornblende dolerites) and, possibly, volcanic analogues (ilmenite-bearing basalts). Deficit of most incompatible elements in the rocks of the series suggests that parental melts derived from a source that had already been melted. Correspondingly, these melts could not be MORB derivatives. Origin of the series is thought to be related to melting of the hydrated oceanic lithosphere during emplacement of an asthenospheric plume (protuberance on the surface of large asthenospheric lens beneath MAR). Genesis of different melts was supposedly controlled by ascent of a chamber of hot mantle magmas thought this lithosphere in compliance with the zone melting mechanism. Melt acquired fluid components from heated rocks at peripheries of the plume and became enriched in Fe, Ti, Pb, Cu, Zn, and other components mobile in fluids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accumulation rates of Mg, Al, Si, Mn, Fe, Ni, Cu, Zn, opal, and calcium carbonate have been calculated from their concentrations in samples from equatorial Deep Sea Drilling Project sites. Maps of element accumulation rates and of Q-mode factors derived from raw data indicate that the flux of trace metals to equatorial Pacific sediments has varied markedly through time and space in response to changes in the relative and absolute influence of several depositional influences: biogenic, detrital, authigenic, and hydrothermal sedimentation. Biologically derived material dominates the sediment of the equatorial Pacific. The distributions of Cu and Zn are most influenced by surface-water biological activity, but Ni, Al, Fe, and Mn are also incorporated into biological material. All of these elements have equatorial accumulation maxima similar to those of opal and calcium carbonate at times during the past 50 m.y. Detritus distributed by trade winds and equatorial surface circulation contributes Al, non-biogenic Si, Fe, and Mg to the region. Detrital sediment is most important in areas with a small supply of biogenic debris and low bulk-accumulation rates. Al accumulation generally increases toward the north and east, indicating its continental source and distribution by the northeast trade winds. Maxima in biological productivity during middle Eocene and latest Miocene to early Pliocene time and concomitant well-developed surface circulation contributed toward temporal maxima in the accumulation rates of Cu, Zn, Ni, and Al in sediments of those ages. Authigenic material is also important only where bulk-sediment accumulation rates are low. Ni, Cu, Zn, and sometimes Mn are associated with this sediment. Fe is almost entirely of hydrothermal origin. Mn is primarily hydrothermal, but some is probably scavenged from sea water by amorphous iron hydroxide floes along with other elements concentrated in hydrothermal sediments, Ni, Cu, and Zn. During the past 50 m.y. all of these elements accumulated over the East Pacific Rise at rates nearly an order of magnitude higher than those at non-rise-crest sites. In addition, factor analysis indicates that some of this material is carried substantial distances to the west of the rise crest. Accumulation rates of Fe in basal metalliferous sediments indicate that the hydrothermal activity that supplied amorphous Fe oxides to the East Pacific Rise areas was most intense during middle Eocene and late Miocene to early Pliocene time.