203 resultados para Denver Pacific Railway and Telegraph Company.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tibetan Plateau (TP), including its surrounding mountain ranges, represents the largest store of ice outside the polar regions. It hosts numerous lakes as well as the head waters of major Asian rivers, on which billions of people depend, and it is particularly sensitive to climate change. The moisture transport to the TP is controlled by the Indian and Pacific monsoon and the Westerlies. Understanding the evolution of the interaction of these circulation systems requires studies on climate archives in different spatial and temporal contexts. The objective of this study is to learn more about the interannual variability of precipitation patterns across the TP and how different hydrologic systems react to different climatic factors. Aragonite shells of the aquatic gastropod Radix, which is widely distributed in the region, may represent suitable archives for inferring hydrologic and climatic signals in particularly high resolution. Therefore, sclerochronological studies of d18O and d13C ratios in Radix shells from seven lakes were conducted, each representing a different hydrologic and climatic setting, on a transect from the Pamirs across the TP. The shell patterns exhibit an increasing influence of precipitation and a decreasing influence of evaporation on the isotope compositions from west to east. d18O values of shells from lakes on the eastern and central TP (Donggi Cona, Yamdrok Yumco, Tarab Co) mirror monsoon signals, indicated by more negative values and higher variabilities compared to the more western lakes (Karakul, Bangong/Nyak, Manasarovar). In Yadang Co, located on the central southern TP, the monsoon rains did not reach the lake in the sampling year, although it is located in a region which is usually affected by monsoon circulation. The d18O values are used to differentiate the annual hydrological cycle into ice cover period, melt water period, precipitation period and evaporation period. d13C compositions in the shells particularly depend on specific habitats, which vary in biological productivity and in carbon sources. d18O and d13C patterns show a positive covariance in shells originating from large closed basins. The results show that Radix shells mirror general climatic differences between the seven lake regions. These differences reflect both regional and local climate signals in sub-seasonal resolution, without noticeable dependence on the particular lake system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first complete cyclic sedimentary successions for the early Paleogene from drilling multiple holes have been retrieved during two ODP expeditions: Leg 198 (Shatsky Rise, NW Pacific Ocean) and Leg 208 (Walvis Ridge, SE Atlantic Ocean). These new records allow us to construct a comprehensive astronomically calibrated stratigraphic framework with an unprecedented accuracy for both the Atlantic and the Pacific Oceans covering the entire Paleocene epoch based on the identification of the stable long-eccentricity cycle (405-kyr). High resolution X-ray fluorescence (XRF) core scanner and non-destructive core logging data from Sites 1209 through1211 (Leg 198) and Sites 1262, 1267 (Leg 208) are the basis for such a robust chronostratigraphy. Former investigated marine (ODP Sites 1001 and 1051) and land-based (e.g., Zumaia) sections have been integrated as well. The high-fidelity chronology is the prerequisite for deciphering mechanisms in relation to prominent transient climatic events as well as completely new insights into Greenhouse climate variability in the early Paleogene. We demonstrate that the Paleocene epoch covers 24 long eccentricity cycles. We also show that no definite absolute age datums for the K/Pg boundary or the Paleocene - Eocene Thermal Maximum (PETM) can be provided by now, because of still existing uncertainties in orbital solutions and radiometric dating. However, we provide two options for tuning of the Paleocene which are only offset by 405-kyr. Our orbitally calibrated integrated Leg 208 magnetostratigraphy is used to revise the Geomagnetic Polarity Time Scale (GPTS) for Chron C29 to C25. We established a high-resolution calcareous nannofossil biostratigraphy for the South Atlantic which allows a much more detailed relative scaling of stages with biozones. The re-evaluation of the South Atlantic spreading rate model features higher frequent oscillations in spreading rates for magnetochron C28r, C27n, and C26n.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New paleomagnetic and paleontologic data from Pacific DSDP Sites 463 and 167 define the magnetic reversals that predate the Cretaceous Normal Polarity Superchron (K-N). Data from Mid-Pacific Mountain Site 463 provide the first definition of polarity chron M0 in the Pacific deep-sea sedimentary record. Foraminiferal biostratigraphy suggests that polarity chron M0 is contained entirely within the lower Aptian Hedbergella similis Zone, in agreement with foraminiferal data from the Italian Southern Alps and Atlantic Ocean. Nannofossil assemblages also suggest an early Aptian age for polarity chron M0, contrary to results from the Italian Umbrian Apennines and Southern Alps, which place polarity chron M0 on the Barremian-Aptian boundary. Biostratigraphic dating discrepancies caused by the time-transgressive, preservational, or provincial nature of paleontological species might be reconciled by the use of magnetostratigraphy, specifically polarity chron M0 which lies close to the Barremian-Aptian boundary. At Magellan Rise Site 167, five reversed polarity zones are recorded in Hauterivian to Aptian sediments. Correlation with M-anomalies is complicated by synsedimentary and postsedimentary sliding about 25 m.y. after basement formation, producing gaps in, and duplications of, the stratigraphic sequence. The magnitude and timing of such sliding must be addressed when evaluating the stratigraphy of these oceanic-rise environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detrital modes for 524 deep-marine sand and sandstone samples recovered on circum-Pacific, Caribbean, and Mediterranean legs of the Deep Sea Drilling Project and the Ocean Drilling Program form the basis for an actualistic model for arc-related provenance. This model refines the Dickinson and Suczek (1979) and Dickinson and others (1983) models and can be used to interpret the provenance/tectonic history of ancient arc-related sedimentary sequences. Four provenance groups are defined using QFL, QmKP, LmLvLs, and LvfLvmiLvl ternary plots of site means: (1) intraoceanic arc and remnant arc, (2) continental arc, (3) triple junction, and (4) strike-slip-continental arc. Intraoceanic- and remnant-arc sands are poor in quartz (mean QFL%Q < 5) and rich in lithics (QFL%L > 75); they are predominantly composed of plagioclase feldspar and volcanic lithic fragments. Continental-arc sand can be more quartzofeldspathic than the intraoceanic- and remnant-arc sand (mean QFL%Q values as much as 10, mean QFL%F values as much as 65, and mean QmKP%Qm as much as 20) and has more variable lithic populations, with minor metamorphic and sedimentary components. The triple-junction and strike-slip-continental groups compositionally overlap; both are more quartzofeldspathic than the other groups and show highly variable lithic proportions, but the strike-slip-continental group is more quartzose. Modal compositions of the triple junction group roughly correlate with the QFL transitional-arc field of Dickinson and others (1983), whereas the strike-slip-continental group approximately correlates with their dissected-arc field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work is based on samples from Deep-Sea Drilling in the Pacific Ocean and from natural sections in its continental setting. Species composition of planktonic foraminifera from Maastrichtian sediments of the Pacific and South Atlantic oceans, as well as from marginal seas of Australia and New Zealand and epicontinental basins of the northern hemisphere has been analysed. Two main issues: reconstruction of Maastrichtian climatic zonality, and reconstruction of Maastrichtian paleodepths. Four bipolar climatic zones have been distinguished. According to preservation of planktonic foraminifera and composition of their complexes three levels of dissolution have been identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcareous nannofossil assemblages were studied from Ocean Drilling Program Holes 1150A, 1150B, 1151A, 1151C, and 1151D in order to estimate the age of sediments drilled in the Japan Trench of the western Pacific Ocean. The abundance and species diversity of nannofossil flora are generally low but are sufficient to show that the sedimentary sequences range from Quaternary to Miocene in age (nannofossil Zones CN15-CN3). The abundance of Coccolithus pelagicus, a cold-water indicator, was studied from sediments younger than 3.83 Ma from both Holes 1150A and 1151A in order to elucidate past climate conditions. Between 3.83 and 2.82 Ma, the abundance of C. pelagicus was generally low, but abundance increased significantly after 2.82 Ma. In agreement with previous studies, this increase appears to be related to a change in the current system around the western Pacific Ocean and eastern Atlantic Ocean that occurred in response to the final elevation of the Isthmus of Panama.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the largest global cooling event of the Cenozoic Era, between 33.8 and 33.5 Myr ago, warm, high-CO2 conditions gave way to the variable 'icehouse' climates that prevail today. Despite intense study, the history of cooling versus ice-sheet growth and sea-level fall reconstructed from oxygen isotope values in marine sediments at the transition has not been resolved. Here, we analyse oxygen isotopes and Mg/Ca ratios of benthic foraminifera, and integrate the results with the stratigraphic record of sea-level change across the Eocene-Oligocene transition from a continental-shelf site at Saint Stephens Quarry, Alabama. Comparisons with deep-sea (Sites 522 (South Atlantic) and 1218 (Pacific)) d18O and Mg/Ca records enable us to reconstruct temperature, ice-volume and sea-level changes across the climate transition. Our records show that the transition occurred in at least three distinct steps, with an increasing influence of ice volume on the oxygen isotope record as the transition progressed. By the early Oligocene, ice sheets were ~25% larger than present. This growth was associated with a relative sea-level decrease of approximately 105 m, which equates to a 67 m eustatic fall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediments from five Leg 167 drill sites and three piston cores were analyzed for Corg and CaCO3. Oxygen isotope stratigraphy on benthic foraminifers was used to assign age models to these sedimentary records. We find that the northern and central California margin is characterized by k.y.-scale events that can be found in both the CaCO3 and Corg time series. We show that the CaCO3 events are caused by changes in CaCO3 production by plankton, not by dissolution. We also show that these CaCO3 events occur in marine isotope Stages (MIS) 2, 3, and 4 during Dansgaard/Oeschger interstadials. They occur most strongly, however, on the MIS 5/4 glaciation and MIS 2/1 deglaciation. We believe that the link between the northeastern Pacific Ocean and North Atlantic is primarily transmitted by the atmosphere, not the ocean. Highest CaCO3 production and burial occurs when the surface ocean is somewhat cooler than the modern ocean, and the surface mixed layer is somewhat more stable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large vesicomyid clams are common inhabitants of sulphidic deep-sea habitats such as hydrothermal vents, hydrocarbon seeps and whale-falls. Yet, the species- and genus-level taxonomy of these diverse clams has been unstable due to insufficiencies in sampling and absence of detailed taxonomic studies that would consistently compare molecular and morphological characters. To clarify uncertainties about species-level assignments, we examined DNA sequences from mitochondrial cytochrome-c-oxidase subunit I (COI) in conjunction with morphological characters. New and published COI sequences were used to create a molecular database for 44 unique evolutionary lineages corresponding to species. Overall, the congruence between molecular and morphological characters was good. Several discrepancies due to synonymous species designations were recognized, and acceptable species names were rectified with published COI sequences in cases where morphological specimens were available. We identified seven species with trans-Pacific distributions, and two species with Indo-Pacific distributions. Presently, 27 species have only been documented from one region, which might reflect limited ranges, or insufficient geographical sampling. Vesicomyids exhibit the greatest species diversity along the northwest Pacific ridge systems and in the eastern Pacific, along the western America margin, where depth zonation typically results in segregation of closely related species. The broad distributions of several vesicomyid species suggest that their required chemosynthetic habitats might be more common than previously recognized and occur along most continental margins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamics of the Pacific Plate is recorded in the systematic variation of location and the 40Ar-39Ar age of seamounts in the Western Pacific from 120 to 65 Ma ago. The seamounts are grouped into three linear zones as long as 5000 km. The seamounts become younger in the southeastern direction along the strike of these zones. Correlation between age and location of seamounts allows to divide the history of their formation into three stages. Rate of seamount growth was relatively low (2-4 cm/yr) during the first and the third stages within intervals of 120-90 and 85-65 Ma, whereas during the second stage (90-85 Ma), the seamounts were growing very fast (80-100 cm/yr). In the midst of this stage, at ~87 Ma ago, magmatic activity increased abruptly. Dynamics of seamount building is in good agreement with (1) pulses in development of the Ontong Java, Manihiki, and Caribbean-Colombian oceanic plateaus; (2) age of spreading acceleration in the mid-Cretaceous; and (3) a short period when the Izanagi Plate ceased to exist and the Kula Plate was formed. Variation in seamounts' age and location are in consistence with the hypothesis of diffuse extension of the Pacific Plate in course of its motion with formation of impaired zones of decompression melting. Direction of extension (325°-340° NW) calculated from the strike of seamount zones is consistent with the path of the Pacific Plate (330° NW) in the Late Cretaceous. Immense perioceanic volcanic belts were formed at that time along the margin of the Asian continent. The Okhotsk-Chukchi Peninsula Belt extends at a right angle to the compression vector. Three stages of this belt's evolution are synchronous with the stages of seamount formation in the Pacific Plate. Delay in origination of the East Sikhote-Alin Volcanic Belt and its different orientation were caused by counterclockwise rotation of the vector of convergence of oceanic and continental plates in the mid-Cretaceous. At the same time, i.e. 95-85 Ma ago, volcanic activity embraced the entire continental margin and tin granites were emplaced everywhere in the Eastern Asia. This short episode (90+/-5 Ma) corresponds to the mid-Cretaceous maximum of compression of the continental margin, and its age fits well a culmination in extension of the Pacific Plate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrology, source region, and timing of precipitation are important controls on the climate of the Great Plains of North America and the composition of terrestrial ecosystems. Moisture delivered to the Great Plains varies seasonally and predominately derives from the Gulf of Mexico/Atlantic Ocean with minor contributions from the Pacific Ocean and Arctic region. For this work, we evaluate long-term relationships for the past ~ 35 million years between North American hydrology, climate, and floral change, using isotopic records and average carbon chain lengths of higher plant n-alkanes from Gulf of Mexico sediments (DSDP Site 94). We find that carbon isotope values (d13C) of n-alkanes, corrected for variations in the d13C value of atmospheric CO2, provide minor evidence for contributions of C4 plants prior to the Middle Miocene. A sharp spike in C4 input is identified during the Middle Miocene Climatic Optimum, and the influence of C4 plants steadily increased during the Late Miocene into the Pleistocene - consistent with other North American records. Chain-length distributions of n-alkanes, indicative of the composition of higher plant communities, remained remarkably constant from 33 to 4 Ma. However, a trend toward longer chain lengths occurred during the past 4 million years, concurrent with an increase in d13C values, indicating increased C4 plant influence and potentially aridity. The hydrogen isotope values (dD) of n-alkanes are relatively invariant between 33 and 9 Ma, and then become substantially more negative (75 per mil) from 9 to 2 Ma. Changes in the plant community and temperature of precipitation can solely account for the observed variations in dD from 33 to 5 Ma, but cannot account for Plio-Pleistocene dD variations and imply substantial changes in the source region of precipitation and seasonality of moisture delivery. We posit that hydrological changes were linked to tectonic and oceanographic processes including the shoaling and closure of the Panamanian Seaway, amplification of North Atlantic Deep Water Production and an associated increase of meridional winds. The southerly movement of the Intertropical Convergence Zone near 4 Ma allowed for the development of a near-modern pressure/storm track system, driving increased aridity and changes in seasonality within the North American interior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complete records of organic-carbon-rich Cretaceous strata were continuouslycored on the flanks of the Mid-Pacific Mountains and southern Hess Rise in the central North Pacific Ocean during DSDP Leg 62. Organic-carbon-rich laminated silicified limestones were deposited in the western Mid-Pacific Mountains during the early Aptian, a time when that region was south of the equator and considerably shallower than at present. Organic-carbon-rich, laminated limestone on southern Hess Rise overlies volcanic basement and includes 136 m of stratigraphic section of late Albian to early Cenomanian age. This limestone unit was deposited rapidly as Hess Rise was passing under the equatorial high-productivity zone and was subsiding from shallow to intermediate depths. The association of volcanogenic components with organic-carbon-rich strata on Hess Rise in the Mid-Pacific Mountains is striking and suggests that there was a coincidence of mid-plate volcanic activity and the production and accumulation of organic matter at intermediate water depths in the tropical Pacific Ocean during the middle Cretaceous. Pyrolysis assays and analyses of extractable hydrocarbons indicate that the organic matter in the limestone on Hess Rise is composed mainly of lipid-rich kerogen derived from aquatic marine organisms and bacteria. Limestones from the Mid-Pacific Mountains generally contain low ratios of pyrolytic hydrocarbons to organic carbon and low hydrogen indices, suggesting that the organic matter may contain a significant proportion of land-derived material, possibly derived from numerous volcanic islands that must have existed before the area subsided. The organic carbon in all samples analyzed is isotopically light (d13C -24 to -29 per mil) relative to most modern rine organic carbon, and the lightest carbon is also the most lipid-rich. There is a positive linear correlation between sulfur and organic carbon in samples from Hess Rise and from the Mid-Pacific Mountains. The slopes and intercepts of C-S regression lines however, are different for each site and all are different from regression lines for samples from modern anoxic marine sediments and from Black Sea cores. The organic-carbon-rich limestones on Hess Rise, the Mid-Pacific Mountains, and other plateaus and seamounts in the Pacific Ocean are not synchronous but do occur within the same general middle Cretaceous time period as organic-carbon-rich lithofacies elsewhere in the world ocean, particularly in the Atlantic Ocean. Strata of equivalent age in the deep basins of the Pacific Ocean are not rich in organic carbon, and were deposited in oxygenated environments. This observation, together with the evidence that the plateau sites were considerably shallower and closse to the equator during the middle Creataceous suggests that local tectonic and hydrographic conditions may have resulted in high surface-water productivity and the preservation of organic matter in an oxygen-deficient environment where an expanded mid-water oxygen minimum developed and impinged on elevated platforms and seamounts.