82 resultados para Clam fisheries
Resumo:
The impact of pCO2 driven ocean acidification on marine bivalve immunity remains poorly understood. To date, this impact has only been investigated in a few bivalve species and the underlying molecular mechanism remains unknown. In the present study, the effects of the realistic future ocean pCO2 levels (pH at 8.1, 7.8, and 7.4) on the total number of haemocyte cells (THC), phagocytosis status, blood cell types composition, and expression levels of twelve genes from the NF-kappa beta signaling and toll-like receptor pathways of a typical bottom burrowing bivalve, blood clam (Tegillarca granosa), were investigated. The results obtained showed that while both THC number and phagocytosis frequency were significantly reduced, the percentage of red and basophil granulocytes were significantly decreased and increased, respectively, upon exposure to elevated pCO2. In addition, exposure to pCO2 acidified seawater generally led to a significant down-regulation in the inducer and key response genes of NF-kappa beta signaling and toll-like receptor pathways. The results of the present study revealed that ocean acidification may hamper immune responses of the bivalve T. granosa which subsequently render individuals more susceptible to pathogens attacks such as those from virus and bacteria.
Resumo:
Oxygen penetration depth and temperature at the rim of the clam colony was measured with a small deep-sea microprofiler module (Treude et al., 2009), carrying 3 oxygen Clark-type microelectrodes (Revsbech et al., 1980) and one temperature sensor (Pt100, UST Umweltsensorentechnik GmbH, Germany). High-resolution microprofiles across the sediment-water interface were measured with a vertical resolution of 100 µm on a total length of 15 cm. Oxygen electrodes had a linear response to the oxygen concentration in seawater and were calibrated in situ using constant readings in the bottom water (oxygen concentration determined by Winkler titration) and the anoxic parts of the sediment.