207 resultados para Anthonomus grandis Insecta


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A total of 35 calcareous nannofossil datums were found in the Neogene sediments recovered at five sites (Sites 803-807) on the Ontong Java Plateau in the equatorial Pacific during Ocean Drilling Program Leg 130. Among them, 12 datums in the Pleistocene-upper Pliocene sequences were correlated with magnetostratigraphy. Pliocene and Miocene calcareous nannofossil assemblages in 289 samples obtained from Holes 804C, 805B, 805C, and 806B were studied. Reticulofenestra coccolith size distribution patterns in these Pliocene-Miocene sediments were also revealed through the present investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seven sites drilled in the central New Hebrides Island Arc during Ocean Drilling Program Leg 134 yielded varying quantities of upper Eocene through Pleistocene calcareous nannofossils. Most of the Miocene and Pliocene strata were absent from Sites 827-831 drilled along the collisional boundary between the Australia and Pacific plates where the North d'Entrecasteaux Ridge and Bougainville Guyot are being subducted. Sites 832 and 833, drilled in the intra-arc North Aoba Basin, contained upper Miocene through Pleistocene and early Pliocene through Pleistocene nannofossils, respectively. Detailed range charts displaying species abundances and age interpretations are presented for all of the sites. Despite problems of reworked assemblages, poor preservation, overgrowths and/or dilution from volcaniclastics, the nannofossil biostratigraphy delineates several repeated sections at Site 829 in the accretionary prism adjacent to Espiritu Santo Island. Paleogene pelagic sediments equivalent to those in a reference section at Site 828 appear to have been scraped from the downgoing North d'Entrecasteaux Ridge and accreted onto the forearc during the Pleistocene. Other sediments in the forearc include Pleistocene olistostromal trench-fill deposits containing clasts of various ages and compositions. Some of the clasts and olistoliths have affinities to rocks exposed on the neighboring islands and environs, whereas others are of uncertain origin. The matrix of the olistostromes is predominately Pleistocene, however, matrices of mixed nannofossil ages are frequently encountered. Comparisons of the mixed nannofossil ages in the matrices with sedimentological and structural data suggest that sediment mixing resulting from fault movement is subordinate to that occurring during deposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

These data sets report the fossil beetle assemblages identified from the Mesolithic to Late Bronze Age at eight sites in the London region. All but one of the study sites are within 2 km of the modern course of the Thames. The sites produced 128 faunal assemblages that yielded 218 identified species in 41 families of Coleoptera (beetles).  Beetle faunas of Mesolithic age indicate extensive wetlands near the Thames, bordered by rich deciduous woodlands. The proportion of woodland species declined in the Neolithic, apparently because of the expansion of wetlands, rather than because of human activities. The Early Bronze Age faunas contained a greater proportion of coniferous woodland and aquatic (standing water) species. An increase in the dung beetle fauna indicates the presence of sheep, cattle and horses, and various beetles associated with crop lands demonstrate the local rise of agriculture, albeit several centuries after the beginnings of farming in other regions of Britain. Late Bronze Age faunas show the continued development of agriculture and animal husbandry along the lower Thames. About 33% of the total identified beetle fauna from the London area sites have limited modern distributions or are extinct in the U.K. Some of these species are associated with the dead wood found in primeval forests; others are wetland species whose habitat has been severely reduced in recent centuries. The third group is stream-dwelling beetles that require clean, clear waters and river bottoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Ocean Drilling Program Leg 125, a thick sequence of middle Eocene to Pleistocene pelagic sediments, volcanogenic sediments, and predominantly extrusive volcanic rocks was recovered. Calcareous nannofossils were examined from 15 holes at nine sites, but Eocene to Miocene calcareous nannofossils were found only from Holes 782A, 784A, 786A, and 786B. In portions of Holes 786A and 786B, datable nannofossil oozes were found intercalated among volcanic flows. The nannofossil biostratigraphy of these holes indicates the presence of three well-defined hiatuses: within the lower Oligocene, between the upper Oligocene and middle Miocene, and between the middle and upper Miocene. An attempt was made to correlate the magnetochronological data with the first or last occurrences of the following species: Sphenolithus distentus, Reticulofenestra bisecta, Reticulofenestra reticulata, and Cyclicargolithus floridanus abisectus n. comb. The results indicate that the FO of Sphenolithus distentus can extend down to Zone CP16 (34.7 Ma), the LO of Reticulofenestra bisecta best defines the boundary between CP19a and CP19b (23.5 Ma), and the LO of Cyclicargolithus f. abisectus n. comb, can extend up to Subzone CN5a (12.5 Ma). No latest Oligocene Cyclicargolithus f. abisectus n. comb, acme was observed. Cyclicargolithus abisectus is considered a subspecies or variant of Cyclicargolithus floridanus because their LOs coincide. As a consequence of these observations, we have modified the definitions of Bukry's Subzones CP14a, CP14b, and CNla. Analyses of sediment-accumulation rates indicate that the rates increased gradually from the Eocene to Miocene. This is especially evident since the late Miocene in Hole 782A. In different parts of the Izu-Bonin forearc basin, however, the rate is not everywhere the same and appears to vary according to the import of volcanogenic materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the late Pliocene-middle Pleistocene a group of 95 species of elongate, cylindrical, deep-sea (lower bathyal-abyssal) benthic foraminifera became extinct. This Extinction Group (Ext. Gp), belonging to three families (all the Stilostomellidae and Pleurostomellidae, some of the Nodosariidae), was a major component (20-70%) of deep-sea foraminiferal assemblages in the middle Cenozoic and subsequently declined in abundance and species richness before finally disappearing almost completely during the mid-Pleistocene Climatic Transition (MPT). So what caused these declines and extinction? In this study 127 Ext. Gp species are identified from eight Cenozoic bathyal and abyssal sequences in the North Atlantic and equatorial Pacific Oceans. Most species are long-ranging with 80% originating in the Eocene or earlier. The greatest abundance and diversity of the Ext. Gp was in the warm oceanic conditions of the middle Eocene-early Oligocene. The group was subjected to significant changes in the composition of the faunal dominants and slightly enhanced species turnover during and soon after the rapid Eocene-Oligocene cooling event. Declines in the relative abundance and flux of the Ext. Gp, together with enhanced species loss, occurred during middle-late Miocene cooling, particularly at abyssal sites. The overall number of Ext. Gp species present began declining earlier at mid abyssal depths (in middle Miocene) than at upper abyssal (in late Pliocene-early Pleistocene) and then lower bathyal depths (in MPT). By far the most significant Ext. Gp declines in abundance and species loss occurred during the more severe glacial stages of the late Pliocene-middle Pleistocene. Clearly, the decline and extinction of this group of deep-sea foraminifera was related to the function of their specialized apertures and the stepwise cooling of global climate and deep water. We infer that the apertural modifications may be related to the method of food collection or processing, and that the extinctions may have resulted from the decline or loss of their specific phytoplankton or prokaryote food source, that was more directly impacted than the foraminifera by the cooling temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 103 recovered Lower Cretaceous sediments from the Galicia margin off the coast of Iberia. The high diversity and abundance of assemblages makes this excellent material for the study of Early Cretaceous calcareous nannofossils. With the exception of a hiatus between the upper Hauterivian and lower Barremian, nannofossil distributions form a continuous composite section from the lower Valanginian to lower Cenomanian sediments recovered at the four sites. The sedimentation history of this rifted continental margin is complex, and careful examination of the nannofossil content and lithology is necessary in order to obtain optimum biostratigraphic resolution. The Lower Cretaceous sequence consists of a lower Valanginian calpionellid marlstone overlain by terrigenous sandstone turbidites deposited in the Valanginian and Hauterivian during initial rifting of this part of the margin. Interbedded calcareous marl and claystone microturbidites overlie the sandstone turbidites. Rifting processes culminated in the late Aptian-early Albian, resulting in the deposition of a calcareous, clastic turbidite sequence. The subsequent deposition of dark carbonaceous claystones (black shales) represents the beginning of seafloor spreading, as the margin continued to subside to depths near or below the CCD. The diversity, abundance, and preservation of nannofossils within these varied lithologies differ, and an attempt to distinguish between near shore and open-marine assemblages is made. Genera used for this purpose include Nannoconus, Micrantholithus, Pickelhaube, and Lithraphidites. In this study, six new species and one new subspecies are described and documented. Ranges of other species are extended, and an attempt is made to clarify existing, yet poorly understood, taxonomic concepts. A technique in which a single specimen is viewed with both light and scanning electron microscopes was used extensively to aid in this task. In addition, further subdivisions of the Sissingh (1977) zonation are suggested in order to increase biostratigraphic resolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biotic effects of volcanism have long been the unknown factors in creating biotic stress, and the contribution of the Deccan volcanism to the K-T mass extinction remains largely unknown. Detailed studies of the volcanic-rich sediments of Indian Ocean Ninetyeast Ridge Sites 216 and 217 and Wharton Basin Site 212 reveal that the biotic effects of late Maastrichtian volcanism on planktic foraminifera and calcareous nannofossils are locally as severe as those of the K-T mass extinction. The biotic expressions of these high stress environments are characterized by the Lilliput effect, which includes reduced diversity by eliminating most K-strategy species, and reduction in specimen size (dwarfing), frequently to less than half their normal adult size of both r-strategy and surviving K-strategy species. In planktic foraminifera, the most extreme biotic stress results are nearly monospecific assemblages dominated by the disaster opportunist Guembelitria, similar to the aftermath of the K-T mass extinction. The first stage of improving environmental conditions results in dominance of dwarfed low oxygen tolerant Heterohelix species and the presence of a few small r-strategy species (Hedbergella, Globigerinelloides). Calcareous nannofossil assemblages show similar biotic stress signals with the dominance of Micula decussata, the disaster opportunist, and size reduction in the mean length of subordinate r-strategy species particularly in Arkhangelskiella cymbiformis and Watznaueria barnesiae. These impoverished and dwarfed late Maastrichtian assemblages appear to be the direct consequences of mantle plume volcanism and associated environmental changes, including high nutrient influx leading to eutrophic and mesotrophic waters, low oxygen in the water column and decreased watermass stratification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty percent (19 genera, 95 species) of cosmopolitan, deep-sea (500-4000 m), benthic foraminiferal species became extinct during the late Pliocene-Middle Pleistocene (3-0.12 Ma), with the peak of extinctions (76 species) occurring during the mid-Pleistocene Climate Transition (MPT, 1.2-0.55 Ma). One whole family (Stilostomellidae, 30 species) was wiped out, and a second (Pleurostomellidae, 29 species) was decimated with just one species possibly surviving through to the present. Our studies at 21 deep-sea core sites show widespread pulsed declines in abundance and diversity of the extinction group species during more extreme glacials, with partial interglacial recoveries. These declines started in the late Pliocene in southern sourced deep water masses (Antarctic Bottom Water, Circumpolar Deep Water) and extending into intermediate waters (Antarctic Intermediate Water, North Atlantic Deep Water) in the MPT, with the youngest declines in sites farthest downstream from high-latitude source areas for intermediate waters. We infer that the unusual apertural types that were targeted by this extinction period were adaptations for a specific kind of food source and that it was probably the demise of this microbial food that resulted in the foraminiferal extinctions. We hypothesize that it may have been increased cold and oxygenation of the southern sourced deep water masses that impacted on this deep water microbial food source during major late Pliocene and Early Pleistocene glacials when Antarctic ice was substantially expanded. The food source in intermediate water was not impacted until major glacials in the MPT when there were significant expansion of polar sea ice in both hemispheres and major changes in the source areas, temperature, and oxygenation of global intermediate waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Ocean Drilling Program (ODP) Leg 189, five sites were drilled in the Tasmanian Seaway with the objective to constrain the paleoceanographic implications of the separation of Australia from Antarctica and to elucidate the paleoceanographic developments throughout the Neogene (Shipboard Scientific Party, 2001a, doi:10.2973/odp.proc.ir.189.101.2001). Sediments ranged from Cretaceous to Quaternary in age and provided the opportunity to describe the paleoenvironments in the Tasman Seaway prior to, during, and after the separation of Australia and Antarctica. This study will focus on postseparation distribution of calcareous nannofossils through the Miocene. Miocene sediments were recovered at all five Leg 189 sites, and four of these sites were studied in detail to determine the calcareous nannofossil biostratigraphy. Hole 1168A, located on the western Tasmanian margin, contains a fairly continuous Miocene record and could be easily zoned using the Okada and Bukry (1980, doi:10.1016/0377-8398(80)90016-X) zonation. Analysis of sediments from Hole 1169A, located on the western South Tasman Rise, was not included in this study, as the recovered sediments were highly disturbed and unsuitable for further analysis (Shipboard Scientific Party, 2001c, doi:10.2973/odp.proc.ir.189.104.2001). Holes 1170A, 1171A, and 1171C are located on the South Tasman Rise south of the modern Subtropical Front (STF). They revealed incomplete Miocene sequences intersected by an early Miocene and late Miocene hiatus and could only be roughly zoned using the Okada and Bukry zonation. Similarly, Hole 1172A, located on the East Tasman Plateau, contains a Miocene sequence with a hiatus in the early Miocene and in the late Miocene and could only be roughly zoned using the Okada and Bukry (1980, doi:10.1016/0377-8398(80)90016-X) zonation. This study aims to improve calcareous nannofossil biostratigraphic resolution in this sector of the mid to high southern latitudes. This paper will present abundance, preservation, and stratigraphic distribution of calcareous nannofossils through the Miocene and focus mainly on biozonal assignment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paleogene calcareous nannofossils from split spoon cores recovered from five wells along the Coastal Plain of New Jersey and Maryland have been analyzed in order to provide onshore information complementary to that derived from the offshore DSDP Site 605 (upper continental rise off New Jersey). Hiatuses are more numerous and of greater extent in the onshore sections, but the major ones correlate well with those noted in the offshore section. At one site at least (Leggett Well), sedimentation may well have been continuous across the Cretaceous/Tertiary boundary, as it is believed to have been at DSDP Site 605. These various correlations are discussed elsewhere in a companion paper (Olsson and Wise, this volume). Important differences in nannofossil assemblages are noted between the onshore (shelf paleoenvironment) and offshore (slope-rise paleoenvironment) sections. Lithostromation simplex, not present offshore, is consistently present onshore and seems to be confined to the Eocene shelf sediments of this region. The same relationship holds for the zonal marker, Rhabdosphaera gladius Locker. The Rhomboaster-Tribrachiatus plexus is more diverse and better preserved in the onshore sections, where the lowermost Eocene Zone CP9 is well represented. Differential preservation is postulated to account for two morphotypes of Tribrachiatus bramlettei (Brönnimann and Stradner). Type A is represented at DSDP Site 605 by individuals with short, stubby arms, but these forms are not present in the equivalent onshore sections. There they are replaced by the Type B morphotypes, which exhibit a similar basic construction but possess much longer, more delicate arms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major objectives of Leg 133 were (1) to define the evolution of the carbonate platforms on the northeastern Australian margin, including their relationship to adjoining basins; and (2) to understand the effects of climate and sea level on their development in space and time (Davies, McKenzie, Palmer-Julson, et al., 1991, doi:10.2973/odp.proc.ir.133.1991). Sixteen sites were drilled, and more than 5.5 km of Neogene core was recovered during Leg 133. However, recovery of Paleogene sediments was unexpectedly poor (a total of a few meters), and the sediments were poorly dated because of strong diagenesis. On the other hand, Site 210 drilled in this region during Leg 21 yielded an expanded Paleogene section, which contains abundant calcareous microfossils. Biostratigraphic information for this section given in Burns, Andrews, et al. (1973, doi:10.2973/dsdp.proc.21.1973) was based primarily on shipboard results. Detailed calcareous nannofossil and planktonic foraminifer biostratigraphies have not been published. Here we provide a detailed documentation of the calcareous nannofossil distribution in the section, biostratigraphically date the section using the modern nannofossil zonation of Okada and Bukry (1980. doi:10.1016/0377-8398(80)90016-X), and construct an age-depth curve based on current knowledge of nannofossil magnetobiochronology. This should provide a useful Paleogene biostratigraphic reference in the northeastern Australian sea, as Site 210 has apparently yielded the most complete Paleogene record in the region. The detailed biostratigraphy should provide a better age constraint for the regional Eocene-Oligocene hiatus recognized previously (e.g., Jenkins and Srinivasan, 1986, doi:10.2973/dsdp.proc.90.113.1986) and should be useful for future studies on various aspects of Paleogene history of the northeastern Australian sea.

Relevância:

10.00% 10.00%

Publicador: