53 resultados para Angle of attack (Aerodynamics)
Resumo:
We have determined the azimuth of bottom-current flow in drift deposit sediments recovered at ODP Sites 1095 and 1101, Antarctic Peninsula, using paleomagnetic reorientation of anisotropy of magnetic susceptibility (AMS) ellipsoids. A total of 38 cores from the two ODP sites have been measured, providing spatial and directional information on the physical record of the ACC (Antarctic Circumpolar Current) in the Plio-Pleistocene. Declination and inclination of the paleomagnetic vector of each core segment were used to reorient the AMS principal axes to the geographic coordinates. The cores were reoriented using the measured direction of the characteristic remanent magnetization (ChRM) with respect to a common reference line for the core, from which we are able to determine the orientation of the paleocurrent flow for Sites 1095 (Drift 7) and 1101 (Drift 4) relative to the geographic coordinates. Both sites have paleocurrent directions trending ~NW-SE, which in the former locality are parallel to a sediment wave field. Our study shows that a combination of magnetic fabric analysis and paleomagnetism allows deep-sea sedimentary fabric to be used as a long-term proxy of bottom-current flow history.
Resumo:
Multibeam data were measured during R/V SONNE cruise SO202 (INOPEX) along track lines of 6938 NM total length in the North Pacific and Bering Sea during transits and stationary work. Starting from Hokkaido (Japan) data were achieved east of the Kuril-Kamchatka Trench and south of the Aleutian Trench. The track crosses the Bowers Ridge, the continental margin of Alaska and the Umnak Plateau in the Bering Sea. Further data were gained in the North Pacific in the area of the Patton Seamounts, Gibson Seamount, Hess Rise and Shatsky Rise. The multibeam sonar system Simrad EM 120 from Kongsberg was operated using 191 beams and an aperture angle of 90° to 140° due to particular conditions. The refraction correction was achieved utilizing 6 CTD profiles measured during the cruise and one from cruise SO201. The quality of data might be reduced during bad weather periods. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.
Resumo:
Large asymmetric bed forms commonly develop in rivers. The turbulence associated with flow separation that develops over their steep lee side is responsible for the form shear stress which can represent a substantial part of total shear stress in rivers. This paper uses the Delft3D modeling system to investigate the effects of bed form geometry and forcing conditions on flow separation length and associated turbulence, and bed form shear stress over angle-of-repose (30 lee side angle) bed forms. The model was validated with lab measurements that showed sufficient agreement to be used for a systematic analysis. The influence of flow velocity, bed roughness, relative height (bed form height/water depth), and aspect ratio (bed form height/length) on the variations of the normalized length of the flow separation zone, the extent of the wake region (where the turbulent kinetic energy (TKE) was more than 70% of the maximum TKE), the average TKE within the wake region and the form shear stress were investigated. Form shear stress was found not to scale with the size of the flow separation zone but to be related to the product of the normalized extent of the wake region (extent of the wake region/extent of water body above the bed form) and the average TKE within the wake region. The results add to understanding of the hydrodynamics of bed forms and may be used for the development of better parameterizations of smallscale processes for application in large-scale studies.
Resumo:
The loess sediment embedding the main Gravettian layer at the Krems-Wachtberg archaeological site facilitates exceptional preservation. To gain insight in the sedimentation process before and after the Paleolithic settlement, the magnetic fabric (preferential orientation of magnetic particles) of loess of the Krems-Wachtberg site is investigated. Magnetic fabric properties clearly show an eolian origin of the loess, but may indicate some relocation in the meter above the cultural layer. The magnetic fabric properties can be divided into three intervals, the top interval shows lowest foliation and inconsistent magnetic fabric directions. The middle interval around the main cultural layer shows low foliation, but a clear preferential NW - SE direction of the lineation. This lineation is interpreted as preferential direction of the eolian loess accumulation from the South-East. The interval below ca. 0.5 m underneath the main find horizon shows a northeast-southwest lineation, but an imbrication suggesting that sediment accumulation occurred perpendicular to this direction, similar to the interval around the find horizon.
Resumo:
Albian turbidites and intercalated shales were cored from ~1145 to 1700 meters below seafloor at Site 1276 in the Newfoundland Basin. Strata at this level dip ~2.5° seaward (toward an azimuth of ~130°) based on seismic profiles. In contrast, beds dip an average of ~10° in the cores. This higher apparent dip is the sum of the ~2.5° seaward dip and a measured hole deviation of 7.43°, which must be essentially in the same seaward direction. Using the maximum dip direction in the cores as a reference direction, paleocurrents were measured from 11 current-ripple foresets and 11 vector means of grain fabric in planar-laminated sandstones. Five of the planar-laminated sandstone samples have a grain imbrication 8°, permitting specification of a unique flow direction rather than just the line-of-motion of the current. Both ripples and grain fabric point to unconfined flow toward the north-northeast. There is considerable spread in the data so that some paleoflow indicators point toward the northwest, whereas others point southeast. Nevertheless, the overall pattern of paleoflow suggests a source for the turbidity currents on the southeastern Grand Banks, likely from the long-emergent Avalon Uplift in that area. On average, turbidity currents apparently flowed axially in the young Albian rift, toward the north. This is opposite to what might be expected for a northward-propagating rift and a young ocean opening in a zipperlike fashion from south to north.