613 resultados para RADIALIS(RAD)
Resumo:
Die Rekonstruktion des Einflusses von Strömungen und glazialmarinen Prozessen auf das Sedimentationsgeschehen am Kontinentalhang der Antarktischen Halbinsel im westlichen Weddellmeer basiert auf sedimentologischen und geophysikalischen Daten eines Kolbenlotkerns. Der Sedimentkern wurde während des Fahrtabschnitts ANT-XIV/3 mit dem FS "Polarstern" aus einer mächtigen Levee-Struktur eines Rinnen-Rückensystems gewonnen. Es wurden sedimentologische sowie sedimentphysikalische Untersuchungen an dem Kernmaterial durchgeführt. Die texturellen Änderungen im Kern und die Variationen der gemessenen Parameter ermöglichen eine lithofazielle Gliederung und stratigraphische Einstufung der Sedimentabfolge. Die untersuchten Sedimente umfassen den Zeitraum der vier letzten Klimazyklen bis heute und repräsentieren die Ablagerungsbedingungen von mehr als 340 000 Jahren. Vier Faziestypen wurden unterschieden, die sowohl glaziale als auch interglaziale Ablagerungsräume charakterisieren. (1) Die überwiegend groblaminierten Sedimentabfolgen wurden der Laminitfazies zugeordnet. Unter glazialen Umweltbedingungen kam es infolge schwacher Bodenströmungen zur Ablagerung feinkörniger, laminierter, strömungsbetonter Sedimente. (2) Strukturlose, sehr homogene Sedimentabfolgen des Kems beschreiben einen weiteren, den Kaltzeiten zugeordneten, Faziestyp, der durch geringe Variationen in den Sedimenteigenschaften charakterisiert ist. (3) Kernabschnitte, die weitgehend strukturlos sind bzw. leichte Bioturbationen und relativ viel eistransportiertes Material aufweisen, wurden als IRD-Fazies bezeichnet. Sie repräsentiert den Übergang vom Glazial zum Interglazial, in dem sich das Schelfeis und die Meereisbeckung zurückzogen. In den Sedimenten kam es infolge der gesteigerten Kalbungsrate zur Anreicherung der Eisfracht. (4) Die relativ biogenreichen, hellen Ablagerungen wurden der interglazialzeitlichen Karbonatfazies zugeteilt. Der signifikant erhöhte Anteil planktischer Foraminiferen weist auf eine gesteigerte Bioproduktivität im Oberflächenwasser hin, die aus verstärkten jahreszeitlichen Schwankungen der Meereisbedeckung resultiert. Die betrachteten Sedimentationsprozesse, wie biologische Produktivität, Umlagerungsprozesse durch Meeresströmungen, gravitativer Sedimenttransport und Eistransport, sind das Abbild komplexer Wechselwirkungen aus Meeresspiegelschwankungen, Änderungen ozeanographischer Bedingungen und der Vereisungsdynamik. Das Sedimentationsgeschehen im Untersuchungsgebiet wurde folglich durch die Variationen der vorherrschenden Umweltbedingungen bestimmt. Im Glazial kam es unter einer geschlossenen Meereisbedeckung zur Ablagerung feinkörniger, geschichteter Sedimente. Vorwiegend Turbiditströmungen kontrollierten das Sedimentationsgeschehen innerhalb des betrachteten Rinnen-Rückensystems. Unter dem Einfluß der Coriolis-Kraft und wahrscheinlich einer Konturströmung wurden die suspendierten, feinkörnigen Partikel aus dem zentralen Bereich der Rinne verdriftet und über dem nördlichen Uferwall abgelagert. Höherenergetische gravitative Prozesse beeinflußten das Sedimentationsgeschehen episodisch und sind durch gut sortierte Ablagerungen mit erhöhten Gehalten im Mittel- bis Grobsiltbereich dokumentiert. Höhere Sedimentationsraten in den Glazialen trugen verstärkt zur Bildung des Uferwalls bei. Die Ablagerungen der ebenfalls glazialzeitlichen homogenen Fazies belegen unterschiedliche Ablagerungsbedingungen und eine Verschiebung der dominierenden Prozesse. Während des Übergangs vom Glazial zum Interglazial nahm die Bodenwasserbildungsrate durch das Aufschwimmen des Schelfeises zu, wodurch die Strömungsintensität gesteigert wurde. Eine verstärkte Eisbergaktivität wird durch die Anreichung des IRD-Materials dokumentiert. Während interglazialer Zeiten ermöglichten offen-marine Bedingungen im Südsommer eine leicht erhöhte biologische Produktivität, so daß der Ablagerungsraum durch die Sedimentation biogener Komponenten verstärkt beeinflußt wurde.
Resumo:
A summary of shipboard Rock-Eval measurements shows that organic matter in Upper Triassic siltstone from the Wombat Plateau is dominated by Type III kerogen and is thermally immature. Neocomian siltstone from the Exmouth Plateau similarly contain thermally immature Type III organic matter. Overlying Upper Cretaceous to Quaternary carbonates are poor in organic matter at both locations, yet significant amounts of methane-dominated gas are dissolved in the pore waters of the thick carbonate sequence present on the Exmouth Plateau. This dry gas is believed to have migrated from deeper and more mature strata containing Type III kerogen.
Resumo:
Radiolarians are abundant and well preserved in the Neogene of the Kerguelen Plateau. They are common and moderately to well preserved in the Oligocene sequences of Site 738, where the Eocene/Oligocene boundary was observed for the first time in subantarctic sediments, and Site 744. Radiolarians are absent from all glacial sediments from Prydz Bay. Classical Neogene stratigraphic markers were tabulated at all sites. Correlations with paleomagnetic ages were made at Sites 745 and 746 for 26 Pliocene-Pleistocene radiolarian events. Many Miocene to Holocene species are missing from Sites 736 and 737, which were drilled in shallow water (less than 800 m). The missing species are considered to be deepliving forms. Occurrences and relative abundances of morphotypes at six sites are reported. Two new genera (Eurystomoskevos and Cymaetron) and 17 new species (Actinomma kerguelenensis, A. campilacantha, Prunopyle trypopyrena, Stylodictya tainemplekta, Lithomelissa cheni, L. dupliphysa, Lophophaena(?) thaumasia, Pseudodictyophimus galeatus, Lamprocyclas inexpectata, L. prionotocodon, Botryostrobus kerguelensis, B. rednosus, Dictyoprora physothorax, Eucyrtidium antiquum, E.(?) mariae, Eurystomoskevos petrushevskaae, and Cymaetron sinolampas) are described from the middle Eocene to Oligocene sediments at Sites 738 and 744. Twenty-seven stratigraphic events are recorded in the middle to late Eocene of Site 738, and 27 additional stratigraphic datums are recorded, and correlated to paleomagnetic stratigraphy, in the early Oligocene at Sites 738 and 744. Eight radiolarian events are recorded in the late Oligocene at Site 744. New evolutionary lineages are proposed for Calocyclas semipolita and Prunopyle trypopyrena.
Resumo:
It is demonstrated by K-Ar analyses that the age of reversely magnetized basalts, which immediately predate magnetic Anomaly 24B, is 53.5 ± 1.9 m.y. Samples from deep levels appear to be grossly contaminated by an extraneous argon component with a uniform argon-40/argon-36 ratio 440. This component is thought to have been derived from fluids circulating in the lava pile during burial. The age result corroborates the assignment previously made to Anomaly 24B by Hailwood et al. (1979) and Lowrie and Alvarez (1981). It additionally suggests that lava extrusion formed part of a much larger magmatic event, which affected wide areas of the North Atlantic margins around the Paleocene/Eocene boundary, and can therefore probably be considered a good estimate of the age of this boundary. Initial 143Nd/144Nd ratios lie in the very restricted range 0.512920 ± 19 to 0.513026 ± 24 and initial 8 7Sr/86Sr ratios from ca. 0.703 to ca. 0.705. Acid leaching reduces the latter range to 0.70264 ± 4 to 0.70384 ± 4, suggesting that the higher 87Sr/86Sr ratios resulted from interaction with seawater. The array of data for treated samples is closely conformable on a 143Nd/144Nd-87Sr/86Sr diagram with the main oceanic mantle array and with previously published fields for Atlantic Ocean basalts. No evidence for any continental crustal contamination has been found. This suggests, but does not prove, that continental crust played no part in the genesis of these rocks.
Resumo:
Significant numbers of radiolarians ranging in age from late middle Miocene to Recent were recovered from six sites drilled on the Oman margin and Owen Ridge. Sparse faunas were recovered from five additional sites on the Oman margin and one site on the Indus Fan. Detailed range charts and biozonations are presented for most sites. The radiolarian assemblages are peculiar in that numerous common tropical forms, some of which are biomarkers, are absent or very rare. In addition, some species not usually found in tropical assemblages are present. These forms, indicative of up welling conditions, fall into three categories: (1) endemic upwelling: species endemic to upwelling and not previously described from the Indian Ocean; (2) displaced temperate: temperate forms not usually found in tropical waters; and (3) enhanced tropical: tropical forms which are more abundant and/or robust in areas of upwelling. Comparison of the Oman margin/Owen Ridge fauna with that recovered from the Peru margin upwelling area (ODP Leg 112) suggests that the assemblage may be globally diagnostic of upwelling conditions. The onset of upwelling is marked by the appearance of siliceous biota at about 11.9 Ma, and there is some indication of a decrease in the strength of the upwelling signal at about 9.6 Ma. A strong pulse in, or strengthening of, the upwelling mechanism is indicated by a marked fauna change at 4.7 Ma. There is a weaker signal, implying a change in upwelling conditions, at about 1.5 Ma.
Resumo:
Oligocene to Quaternary sediments were recovered from the Antarctic continental margin in the eastern Weddell Sea during ODP Leg 113 and Polarstern expedition ANT-VI. Clay mineral composition and grain size distribution patterns are useful for distinguishing sediments that have been transported by ocean currents from those that were ice-rafted. This, in turn, has assisted in providing insights about the changing late Paleogene to Neogene sedimentary environment as the cryosphere developed in Antarctica. During the middle Oligocene, increasing glacial conditions on the continent are indicated by the presence of glauconite sands, that are interpreted to have formed on the shelf and then transported down the continental slope by advancing glaciers or as a result of sea-level lowering. The dominance of illite and a relatively high content of chlorite suggest predominantly physical weathering conditions on the continent. The high content of biogenic opal from the late Miocene to the late Pliocene resulted from increased upwelling processes at the continental margin due to increased wind strength related to global cooling. Partial melting of the ice-sheet occurred during an early Pliocene climate optimum as is shown by an increasing supply of predominantly current-derived sediment with a low mean grain size and peak values of smectite. Primary productivity decreased at ~ 3 Ma due to the development of a permanent sea-ice cover close to the continent. Late Pleistocene sediments are characterized by planktonic foraminifers and biogenic opal, concentrated in distinct horizons reflecting climatic cycles. Isotopic analysis of AT. pachyderma produced a stratigraphy which resulted in a calculated sedimentation rate of 1 cm/k.y. during the Pleistocene. Primary productivity was highest during the last three interglacial maxima and decreased during glacial episodes as a result of increasing sea-ice coverage.
Resumo:
Sediment patterns such as texture, composition, and facies from three selected areas of the Antarctic continental margin of the Weddell Sea are discussed in relation to environmental variations of the Quaternary hydrosphere and kryosphere. Advance and retreat of ice shelves as well as oscillations in sea ice coverage are reflected by particular sediment facies. The distribution of ice-rafted detritus tracks the Antarctic Coastal Current, and the Weddell Sea Bottom water contour current can be recognized by its distinctive winnowing and erosion pattern. Distribution and abundance of biogenic sediment components are mainly controlled by duration of sea ice coverage reflecting the long-term climatic evolution.
Resumo:
A 2.9 m long sedimentary record was studied from a small lake, here referred to as Duck Lake, located at 76°25'N, 18°45'W on Store Koldewey, an elongated island off the coast of Northeast Greenland. The sediments were investigated for their geophysical and biogeochemical characteristics, and for their fossil chironomid assemblages. Organic matter began to accumulate in the lake at 9.1 cal. kyr BP, which provides a minimum age for the deglaciation of the basin. Although the early to mid-Holocene is known as a thermal maximum in East Greenland, organic matter accumulation in the lake remained low during the early Holocene, likely due to late plant immigration and lack of nutrient availability. Organic matter accumulation increased during the middle and late Holocene, when temperatures in East Greenland gradually decreased. Enhanced soil formation probably led to higher nutrient availability and increased production in the lake. Chironomids are abundant throughout the record after 9.1 cal. kyr BP and seem to react sensitively to changes in temperature and nutrient availability. It is concluded that relative temperature reconstructions based on biogeochemical data have to be regarded critically, particularly in the period shortly after deglaciation when nutrient availability was low. Chironomids may be a suitable tool for climatic reconstructions even in those high arctic environments. However, a better understanding of the ecology of chironomids under these extreme conditions is needed.
Resumo:
A 10Be/9Be-based chronostratigraphy has been determined for ODP 181, Site 1121 sediment core, recovered from the foot of the Campbell Plateau, Southwest Pacific Ocean. This core was drilled through the Campbell 'skin drift' in ca. 4500 m water depth on the mid-western margin of the extensive Campbell Nodule Field, beneath the flow of the major cold-water Deep Western Boundary Current (DWBC). In the absence of detailed biostratigraphy, beryllium isotopes have provided essential time information to allow palaeo-environmental interpretation to be undertaken on the upper 7 m of the core. Measured 10Be/9Be ratios of sediment, and of ferromanganese nodules entrapped in the sediment, decrease systematically with depth in the core, in accordance with radioactive decay. However, the 10Be/9Be data diverge from ca. 3 m below the seafloor (mbsf) to the top of the core, giving rise to several possible geochronological models. The preferred model assumes that the measured 10Be/9Be ratios of the nodule rims reflect initial 10Be/9Be ratios equivalent to contemporary seawater, and that these can be used to derive the true age of the sediment where the nodules occur. The nodule rim ages can be then used to interpret the sediment 10Be/9Be data, which indicate an overall age to ca. 7 mbsf of ca. 17.5 Ma. The derived chronology is consistent with diatom biostratigraphy, which indicates an age of 2.2-3.6 Ma at 1 mbsf. Calculated sedimentation rates range from 8 to 95 cm m.y.**-1, with an overall rate to 7 mbsf of ca. 39 cm m.y.**-1. The lowest rates generally coincide with the occurrence of entrapped nodules, and reflect periods of increased bottom current flow causing net sediment loss. Growth rates of individual nodules decrease towards the top of the sediment core, similar to the observed decrease in growth rate from core to rim of seafloor nodules from the Campbell Nodule Field. This may be related to an overall increase in the vigour of the DWBC from ca. 10 Ma to the present.
Resumo:
The scarcity of records of Early Paleocene radiolarians has meant that while radiolarian biostratigraphy is firmly established as an important tool for correlation, there has been a long-standing gap between established zonations for the Cretaceous and from latest Paleocene to Recent. It has also led to considerable speculation over the level of faunal change across the Cretaceous/Tertiary (K/T) boundary. Consequently, the discovery of rich and diverse radiolarian assemblages in well-delineated K/T boundary sections within siliceous limestones of the Amuri Limestone Group in eastern Marlborough, New Zealand, is of great significance for biostratigraphy and K/T boundary research. This initial report is restricted to introducing a new latest Cretaceous to mid Late Paleocene zonation based on the radiolarian succession at four of these sections and a re-examination of faunas from coeval sediments at DSDP Site 208 (Lord Howe Rise). Three new Paleocene species are described: Amphisphaera aotea, Amphisphaera kina and Stichomitra wero. Six new interval zones are defined by the first appearances of the nominate species. In ascending order these are: Lithomelissa? hoplites Foreman (Zone RK9, Cretaceous), Amphisphaera aotea n. sp. (Zone RP1, Paleocene), Amphisphaera kina n. sp. (RP2), Stichomitra granulata Petrushevskaya (RP3), Buryellaforemanae petrushevskaya (RP4) and Buryella tetradica (RP5). Good age control from foraminifera and calcareous nannofossils permits close correlation with established microfossil zonations. Where age control is less reliable, radiolarian events are used to substantially improve correlation between the sections. No evidence is found for mass extinction of radiolarians at the end of the Cretaceous. However, the K/T boundary does mark a change from nassellarian to spumellarian dominance, due to a sudden influx of actinommids, which effectively reduces the relative abundance of many Cretaceous survivors. An accompanying influx of diatoms in the basal Paleocene of Marlborough, together with evidence for an increase of total radiolarian abundance, suggests siliceous plankton productivity increased across the K/T boundary. Possible causes for this apparently localised phenomenon are briefly discussed.
Resumo:
Bentonites (i.e., smectite-dominated, altered volcanic ash layers) were recovered in Berriasian to Valanginian hemipelagic sediments of the Wombat Plateau (Site 761) and southern Exmouth Plateau (Site 763). They are compared to coeval bentonites in eupelagic sediments of the adjacent Argo Abyssal Plain (Sites 261 and 765) and Gascoyne Abyssal Plain (Site 766). A volcaniclastic origin with dacitic to rhyolitic ash as parent material is suggested by the abundance of well-ordered montmorillonite, fresh to altered silicic glass shards, volcanogenic minerals (euhedral sanidine, apatite, and long-prismatic zircon), and volcanic rock fragments, and by a vitroclastic ultrafabric (smectitized glass shards). We distinguish (1) pure smectite bentonites with a white, pink, or light gray color, a waxy appearance, and a very homogeneous, cryptocrystalline smectite matrix (water-free composition at Site 761: 68.5% SiO2, 0.27% TiO2, 19.1% Al2O3, 3.3% Fe2O3, 0.4%-1.1% Na2O, and 0.6% K2O) and (2) impure bentonitic claystones containing mixtures of volcanogenic smectite and pyroclastic grains with terrigenous and pelagic components. The ash layers were progressively altered during diagenesis. Silicic glass was first hydrated, then slightly altered (etched with incipient smectite authigenesis), then moderately smectitized (with shard shape still intact), and finally completely homogenized to a pure smectite matrix without obvious relict structures. Euhedral clinoptilolite is the latest pore-filling or glass-replacing mineral, postdating smectite authigenesis. Volcanic activity was associated with continental breakup and rapid subsidence during the "juvenile ocean phase." Potential source areas for a Neocomian post-breakup volcanism include the Wombat Plateau, Joey and Roo rises, Scott Plateau, and Wallaby Plateau/Cape Range Fracture Zone. Westward-directed trade winds transported silicic ash from these volcanic source areas to the Exmouth Plateau into the adjacent abyssal plains. The Wombat Plateau bentonites are interpreted as proximal ash turbidites.