583 resultados para Flensburg Fjord


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes differences in plankton community structure and in chemical and physical gradients between the offshore West Greenland Current system and inland regions close to the Greenland Ice Sheet during the post-bloom in Godthabsfjorden (64° N, 51° W). The offshore region had pronounced vertical mixing, with centric diatoms and Phaeocystis spp. dominating the phytoplankton, chlorophyll (chl) a (0.3 to 3.9 µg/l) was evenly distributed and nutrients were depleted in the upper 50 m. Ciliates and heterotrophic dinoflagellates constituted equal parts of the protozooplankton biomass. Copepod biomass was dominated by Calanus spp. Primary production, copepod production and the vertical flux were high offshore. The water column was stratified in the fjord, causing chl a to be concentrated in a thin sub-surface layer. Nutrients were depleted above the pycnocline, and Thalassiosira spp. dominated the phytoplankton assemblage close to the ice sheet. Dinoflagellates dominated the protozooplankton biomass, whereas copepod biomass was low and was dominated by Pseudocalanus spp. and Metridia longa. Primary production was low in the outer part of the fjord but considerably higher in the inner parts of the fjord. Copepod production was exceeded by protozooplankton production in the fjord. The results of both physical/chemical factors and biological parameters suggest separation of offshore and fjord systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have suggested that the marine contribution of methane from shallow regions and melting marine terminating glaciers may have been underestimated. Here we report on methane sources and potential sinks associated with methane seeps in Cumberland Bay, South Georgia's largest fjord system. The average organic carbon content in the upper 8 meters of the sediment is around 0.65 wt.%; this observation combined with Parasound data suggest that the methane gas accumulations probably originate from peat-bearing sediments currently located several tens of meters below the seafloor. Only one of our cores indicates upward advection; instead most of the methane is transported via diffusion. Sulfate and methane flux estimates indicate that a large fraction of methane is consumed by anaerobic oxidation of methane (AOM). Carbon cycling at the sulfate-methane transition (SMT) results in a marked fractionation of the d13C-CH4 from an estimated source value of -65 per mil to a value as low as -96 per mil just below the SMT. Methane concentrations in sediments are high, especially close to the seepage sites (~40 mM); however, concentrations in the water column are relatively low (max. 58 nM) and can be observed only close to the seafloor. Methane is trapped in the lowermost water mass, however, measured microbial oxidation rates reveal very low activity with an average turnover of 3.1 years. We therefore infer that methane must be transported out of the bay in the bottom water layer. A mean sea-air flux of only 0.005 nM/m²/s confirms that almost no methane reaches the atmosphere.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During summer 2014 (mid-July - mid-September 2014), early life-stage Fucus vesiculosus were exposed to combined ocean acidification and warming (OAW) in the presence and absence of enhanced nutrient levels (OAW x N experiment). Subsequently, F. vesiculosus germlings were exposed to a final upwelling disturbance during 3 days (mid-September 2014). Experiments were performed in the near-natural scenario "Kiel Outdoor Benthocosms" including natural fluctuations in the southwestern Baltic Sea, Kiel Fjord, Germany (54°27 'N, 10°11 'W). Genetically different sibling groups and different levels of genetic diversity were employed to test to which extent genetic variation would result in response variation. The data presented here show the phenotypical response (growth and survival) of the different experimental populations of F. vesiculosus under OAW, nutrient enrichment and the upwelling event. Log effect ratios demonstrate the responses to enhanced OAW and nutrient concentrations relative to the ambient conditons. Carbon, nitrogen content (% DW) and C:N ratios were measured after the exposure of ambient and high nutrient levels. Abiotic conditions the OAW x nutrient experiment and the upwelling event, are shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This data report includes the analytical results of about 220 water wamples collected at 33 stations in the Fjords of Kiel ,...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic susceptibility and ice-rafted debris of surface sediments in the Nordic Seas were investigated to reconstruct source areas and recent transport pathways of magnetic minerals. From the distribution of magnetic susceptibility and ice-rafted debris and published data on petrographic tracers for iceberg drift, we reconstructed a counter-clockwise iceberg drift pattern during cooler phases in the Holocene, which is similar to conceptual and numerical models for Weichselian iceberg drift. The release of basaltic debris at Scoresby Sund played a significant role for the magnetic signature of stadial/interstadial events during isotope stage 3 recorded in sediment cores of the Nordic Seas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CO2 emissions are leading to an acidification of the oceans. Predicting marine community vulnerability towards acidification is difficult, as adaptation processes cannot be accounted for in most experimental studies. Naturally CO2 enriched sites thus can serve as valuable proxies for future changes in community structure. Here we describe a natural analogue site in the Western Baltic Sea. Seawater pCO2 in Kiel Fjord is elevated for large parts of the year due to upwelling of CO2 rich waters. Peak pCO2 values of >230 Pa (>2300 µatm) and pHNBS values of <7.5 are encountered during summer and autumn, average pCO2 values are ~70 Pa (~700 µatm). In contrast to previously described naturally CO2 enriched sites that have suggested a progressive displacement of calcifying auto- and heterotrophic species, the macrobenthic community in Kiel Fjord is dominated by calcifying invertebrates. We show that blue mussels from Kiel Fjord can maintain control rates of somatic and shell growth at a pCO2 of 142 Pa (1400 µatm, pHNBS = 7.7). Juvenile mussel recruitment peaks during the summer months, when high water pCO2 values of ~100 Pa (~1000 µatm) prevail. Our findings indicate that calcifying keystone species may be able to cope with surface ocean pHNBS values projected for the end of this century when food supply is sufficient. However, owing to non-linear synergistic effects of future acidification and upwelling of corrosive water, peak seawater pCO2 in Kiel Fjord and many other productive estuarine habitats could increase to values >400 Pa (>4000 µatm). These changes will most likely affect calcification and recruitment, and increase external shell dissolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A ship-based acoustic mapping campaign was conducted at the exit of Ilulissat Ice Fjord and in the sedimentary basin of Disko Bay to the west of the fjord mouth. Submarine landscape and sediment distribution patterns are interpreted in terms of glaciomarine facies types that are related to variations in the past position of the glacier front. In particular, asymmetric ridges that form a curved entity and a large sill at the fjord mouth may represent moraines that depict at least two relatively stable positions of the ice front in the Disko Bay and at the fjord mouth. In this respect, Ilulissat Glacier shows prominent differences to the East Greenland Kangerlussuaq Glacier which is comparable in present size and present role for the ice discharge from the inland ice sheet. Two linear clusters of pockmarks in the center of the sedimentary basin seem to be linked to ongoing methane release due to dissociation of gas hydrates, a process fueled by climate warming in the Arctic realm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mytilus edulis were cultured for 3 months under six different seawater pCO2 levels ranging from 380 to 4000 µatm. Specimen were taken from Kiel Fjord (Western Baltic Sea, Germany) which is a habitat with high and variable seawater pCO2 and related shifts in carbonate system speciation (e.g., low pH and low CaCO3 saturation state). Hemolymph (HL) and extrapallial fluid (EPF) samples were analyzed for pH and total dissolved inorganic carbon (CT) to calculate pCO2 and [HCO3]. A second experiment was conducted for 2 months with three different pCO2 levels (380, 1400 and 4000 µatm). Boron isotopes (delta11B) were investigated by LA-MC-ICP-MS (Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry) in shell portions precipitated during experimental treatment time. Additionally, elemental ratios (B/Ca, Mg/Ca and Sr/Ca) in the EPF of specimen from the second experiment were measured via ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry). Extracellular pH was not significantly different in HL and EPF but systematically lower than ambient water pH. This is due to high extracellular pCO2 values, a prerequisite for metabolic CO2 excretion. No accumulation of extracellular [HCO3] was measured. Elemental ratios (B/Ca, Mg/Ca and Sr/Ca) in the EPF increased slightly with pH which is in accordance with increasing growth and calcification rates at higher seawater pH values. Boron isotope ratios were highly variable between different individuals but also within single shells. This corresponds to a high individual variability in fluid B/Ca ratios and may be due to high boron concentrations in the organic parts of the shell. The mean delta11B value shows no trend with pH but appears to represent internal pH (EPF) rather than ambient water pH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Sandergebiete sind von 5 Zentren her geschüttet, den Gletschertoren bei Flensburg, Frörup/Översee, Idstedt/Lürschau, Schleswig, Owschlag. Die Körnung der Schmelzwassersande nimmt mit zunehmender Entfernung von den Gletschertoren zunächst schnell, von Medianwerten über 1 mm auf Medianwerte um 0,4 mm in 10 km, dann langsam bis auf Medianwerte unter 0,2 mm in 30 km Entfernung ab. Sortierung und Symmetrie der Sande steigen entsprechend. Aus den Kornverteilungen lassen sich die Fließgeschwindigkeiten bei der Ablagerung ablesen. Sie sind geringer gewesen, als es die mächtigen und verbreiteten Akkumulationen erscheinen lassen. Bereits in 6 km Entfernung vom Eisrand flossen die Schmelzwässer als träge Bäche (0,3 m/sec) ab. In den Gletschertoren traten stoßweise extreme Fließgeschwindigkeiten auf, waren aber nur in geringem Maße am Gesamtaufbau der Sander beteiligt. Die Verbreitung der Würmsande paßt sich den Formen einer älteren Landschaft an. Sie läßt sich im behandelten Gebiet mit Hilfe der Schwermineralanalyse deutlich gegenüber den rißzeitlichen Ablagerungen abgrenzen, da die Verteilungen in den verschiedenaltrigen Sedimenten unterschiedlich sind. Vor Allem das Hornblende/Epidotverhältnis (Hornblendezahl nach STEINERT) ist ein gutes Kriterium. Da rißzeitliche Ablagerungen von den Schmelzwässern aufgearbeitet wurden, und zudem die Hornblenden im Laufe des Transportes stark abrollen, verwischen sich die Unterschiede in weiter Entfernung vom Eisrand. Schmelzwassersande der Würmvereisung sind vor Allem im Norden des Arbeitsgebietes weit nach Westen, bis an die nordfriesischen Inseln, geschüttet worden. Die Schmelzwässer benutzten als Durchlässe zu den Senken des Eemmeeres an der Westküste Täler in rißzeitlichen Hochgebieten. Die Wassermengen wurden hier gebündelt, sodaß sich auf den Eemablagerungen im Anschluß an die Durchlässe "Sekundärsander" ausbreiteten. Die Mächtigkeit der anstehenden Würm-Sandergebiete beträgt bis zu 20 m, meistens zwischen 10 und 15 m. An der Westküste sind die Schmelzwasserablagerungen von marinem Alluvium überdeckt. Teile der morphographisch als junge Sanderebenen erscheinenden Gebiete bestehen in Wirklichkeit aus rißzeitlichen, von jungen Schmelzwässern allenfalls oberflächlich umgearbeiteten Ablagerungen der älteren Vereisung. So ist der westliche und südwestliche Teil des Schleisanders schon während der Rißvereisung aufgeschüttet.