971 resultados para Accumulation rate, aluminium oxide


Relevância:

100.00% 100.00%

Publicador:

Resumo:

About one hundred samples of sediments and rocks recovered in Hole 603B were analyzed for type, abundance, and isotopic composition of organic matter, using a combination of Rock-Eval pyrolysis, C-H-N-S elemental analysis, and isotope-ratio mass spectrometry. Concentrations of major, minor, and trace inorganic elements were determined with a combination of X-ray fluorescence and induction-coupled plasma spectrometry. The oldest strata recovered in Hole 603B (lithologic Unit V) consist of interbedded light-colored limestones and marlstones, and black calcareous claystones of Neocomian age. The inorganic and organic geochemical results suggest a very terrigenous aspect to the black claystones. The organic geochemical results indicate that the limestones and marlstones contain a mixture of highly degraded marine and terrestrial organic matter. Comparison of the Neocomian carbonates at Site 603 with those on the other side of the North Atlantic, off Northwest Africa at Site 367, shows that the organic matter at Site 367 contains more marine organic matter, as indicated by higher pyrolysis hydrogen indices and lighter values of d13C. Comparison of inorganic geochemical results for the carbonate lithologies at Site 603 with those for carbonate lithologies at Site 367 suggests that the Site 603 carbonates may contain clastic material from both North American and African sources. The black claystones at Site 603, on the other hand, probably were derived almost entirely from North American clastic sources. Lithologic Unit IV overlying the Neocomian carbonates, consists of interbedded red, green, and black claystones. The black claystones at Site 603 contain more than ten times the organic carbon concentration of the interbedded green claystones. The average concentration of organic carbon in the black claystones (2.8%), however, is low relative to most mid-Cretaceous black claystones and shales in the Atlantic, particularly those found off Northwest Africa. The geochemical data all suggest that the organic matter in the black claystones is more abundant but generally more degraded than the organic matter in the green claystones, and that it was derived mainly from terrestrial sources and deposited in oxygenated bottom waters. The increased percentage of black claystone beds in the upper Cenomanian section, and the presence of more hydrogen-rich organic matter in this part of the section, probably resulted from the increased production and accumulation of marine organic matter that is represented worldwide near the Cenomanian/Turonian boundary in deep-sea and land sections. A few upper Cenomanian black claystone samples that have hydrogen indices > 150 also contain particularly high concentrations of V and Zn. Most samples of black claystone, however, are not particularly metal-rich compared with other black claystones and shales. Compared with red claystones from lithologic Unit IV, the green and black claystones are enriched in many trace transition elements, especially V, Zn, Cu, Co, and Pb. The main difference between the "carbonaceous" claystones of lithologic Unit IV and "variegated" or "multicolored" claystones of the overlying Upper Cretaceous to lower Tertiary Unit III is the absence of black claystone beds. As observed at several other sites (105 and 386), the multicolored claystones at Site 603 are somewhat enriched in several trace transition elements-especially Cu, Ni, and Cr-relative to most deep-sea clays. The multicolored claystones are not enriched in Fe and Mn, and therefore are not "metalliferous" sediments in the sense of those found at several locations in the eastern Pacific. The source of the slightly elevated concentrations of transition metals in the multicolored claystones probably is upward advection and diffusion of metals from the black claystones of the underlying Hatteras Formation. The red, orange, and green claystone beds of lithologic Unit II (Eocene), like those of Unit III, really represent a continuation of deposition of multicolored claystone that began after the deposition of the Neocomian carbonates. The color of the few black beds that occur within this unit results from high concentrations of manganese oxide rather than high concentrations of organic matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principal paleoceanographic objective of Ocean Drilling Program Leg 115 was to collect a suite of materials that would allow reconstruction of the dynamic features of the late Cenozoic carbonate system in the equatorial Indian Ocean. This goal was achieved with the recovery of sediments from a closely spaced depth transect (1541-4428 m) of five sites (Sites 707 through 711) from on and around the Mascarene Plateau that record the last 50 m.y. of pelagic deposition. More than 2200 measurements of carbonate content are combined here with a highly resolved bio- and magnetostratigraphy to produce the first detailed compilation of bulk, carbonate, and noncarbonate mass accumulation rates (MARs) from the Indian Ocean. These results allow us to recognize three major depositional intervals, each characterized by a distinct depth-dependent pattern of carbonate accumulation: (1) the Paleogene, a time of moderate accumulation rates (0.4-0.7 g/cm**2/1000 yr) and reduced between-site accumulation differences; (2) the early and middle Miocene, a period characterized by greatly reduced carbonate MARs (typically <0.2 g/cm**2/1000 yr) at all sites and a shallow carbonate compensation depth; and (3) the late Miocene to Holocene, a time span marked by the highest bulk and carbonate accumulation rates of the last 50 Ma (1.6-1.8 g/cm**2/1000 yr), and the first appearance of substantial contrasts in carbonate accumulation as a function of the water depth of the drill site. The fundamentally different character of the carbonate system during each of these intervals must represent a regional response to the complex evolution of late Cenozoic oceans and climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of mineralogical and geochemical investigations of post-Middle Jurassic deposits of the Atlantic Ocean are based on materials of the Deep Sea Drilling Project. Comparative characteristics of primary matter for ''black shales'' are given. Exhalative origin of heavy metal accumulation in near-axial sedimentary deeps of the Mid-Atlantic Ridge (23°N) are shown. History of post-Middle Jurassic sedimentation is considered on the base of clay mineral-, clastic component-, trace and rare- chemical element studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nature of Re-platinum-group element (PGE; Pt, Pd, Ir, Os, Ru) transport in the marine environment was investigated by means of marine sediments at and across the Cretaceous-Tertiary boundary (KTB) at two hemipelagic sites in Europe and two pelagic sites in the North and South Pacific. A traverse across the KTB in the South Pacific pelagic clay core found elevated levels of Re, Pt, Ir, Os, and Ru, each of which is approximately symmetrically distributed over a distance of ~1.8 m across the KTB. The Re-PGE abundance patterns are fractionated from chondritic relative abundances: Ru, Pt, Pd, and Re contents are slightly subchondritic relative to Ir, and Os is depleted by ~95% relative to chondritic Ir proportions. A similar depletion in Os (~90%) was found in a sample of the pelagic KTB in the North Pacific, but it is enriched in Ru, Pt, Pd, and Re relative to Ir. The two hemipelagic KTB clays have near-chondritic abundance patterns. The ~1.8-m-wide Re-PGE peak in the pelagic South Pacific section cannot be reconciled with the fallout of a single impactor, indicating that postdepositional redistribution has occurred. The elemental profiles appear to fit diffusion profiles, although bioturbation could have also played a role. If diffusion had occurred over ~65 Ma, the effective diffusivities are ~10**?13 cm**2/s, much smaller than that of soluble cations in pore waters (~10**?6 cm**2/s). The coupling of Re and the PGEs during redistribution indicates that postdepositional processes did not significantly fractionate their relative abundances. If redistribution was caused by diffusion, then the effective diffusivities are the same. Fractionation of Os from Ir during the KTB interval must therefore have occurred during aqueous transport in the marine environment. Distinctly subchondritic Os/Ir ratios throughout the Cenozoic in the South Pacific core further suggest that fractionation of Os from Ir in the marine environment is a general process throughout geologic time because most of the inputs of Os and Ir into the ocean have Os/Ir ratios >/=1. Mass balance calculations show that Os and Re burial fluxes in pelagic sediments account for only a small fraction of the riverine Os (<10%) and Re (<0.1%) inputs into the oceans. In contrast, burial of Ir in pelagic sediments is similar to the riverine Ir input, indicating that pelagic sediments are a much larger repository for Ir than for Os and Re. If all of the missing Os and Re is assumed to reside in anoxic sediments in oceanic margins, the calculated burial fluxes in anoxic sediments are similar to observed burial fluxes. However, putting all of the missing Os and Re into estuarine sediments would require high concentrations to balance the riverine input and would also fail to explain the depletion of Os at pelagic KTB sites, where at most ~25% of the K-T impactor's Os could have passed through estuaries. If Os is preferentially sequestered in anoxic marine environments, it follows that the Os/Ir ratio of pelagic sediments should be sensitive to changes in the rates of anoxic sediment deposition. There is thus a clear fractionation of Os and Re from Ir in precipitation out of sea water in pelagic sections. Accordingly, it is inferred here that Re and Os are removed from sea water in anoxic marine depositional regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine biological productivity has been invoked as a possible climate driver during the early Paleogene through its potential influence on atmospheric carbon dioxide concentrations. However, the relationship of export productivity (the flux of organic carbon (C) from the surface ocean to the deep ocean) to organic C burial flux (the flux of organic C from the deep ocean that is buried in marine sediments) is not well understood. We examine the various components involved with atmosphere-to-ocean C transfer by reconstructing early Paleogene carbonate and silica production (using carbonate and silica mass accumulation rates (MARs)); export productivity (using biogenic barium (bio-Ba) MARs); organic C burial flux (using reactive phosphorus (P) MARs); redox conditions (using uranium and manganese contents); and the fraction of organic C buried relative to export productivity (using reactive P to bio-Ba ratios). Our investigations concentrate on Paleocene/Eocene sections of Sites 689/690 from Maud Rise and Site 738 from Kerguelen Plateau. In both regions, export productivity, organic C burial flux, and the fraction of organic C buried relative to export productivity decreased from the Paleocene/early Eocene to the middle Eocene. A shift is indicated from an early Paleogene two-gyre circulation in which nutrients were not efficiently recycled to the surface via upwelling in these regions, to a circulation more like the present day with efficient recycling of nutrients to the surface ocean. Export productivity was enhanced for Kerguelen Plateau relative to Maud Rise throughout the early Paleogene, possibly due to internal waves generated by the plateau regardless of gyre circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SeaBeam echo sounding, seismic reflection, magnetics, and gravity profiles were run along closely spaced tracks (5 km) parallel to the Atlantis II Fracture Zone on the Southwest Indian Ridge, giving 80% bathymetric coverage of a 30- * 170-nmi strip centered over the fracture zone. The southern and northern rift valleys of the ridge were clearly defined and offset north-south by 199 km. The rift valleys are typical of those found elsewhere on the Southwest Indian Ridge, with relief of more than 2200 m and widths from 22 to 38 km. The ridge-transform intersections are marked by deep nodal basins lying on the transform side of the neovolcanic zone that defines the present-day spreading axis. The walls of the transform generally are steep (25°-40°), although locally, they can be more subdued. The deepest point in the transform is 6480 m in the southern nodal basin, and the shallowest is an uplifted wave-cut terrace that exposes plutonic rocks from the deepest layer of the ocean crust at 700 m. The transform valley is bisected by a 1.5-km-high median tectonic ridge that extends from the northern ridge-transform intersection to the midpoint of the active transform. The seismic survey showed that the floor of the transform contains up to 0.5 km of sediment. Piston-coring at two locations on the transform floor recovered more than 1 m of sand and gravel, which appears to be turbidites shed from the walls of the fracture zone. Extensive dredging showed that more than two-thirds of the crust exposed in the transform valley and its walls were plutonic rocks, principally gabbros and residual mantle peridotites. In contrast, based on dredging and seafloor morphology, only relatively undisrupted pillow basalt flows have been exposed on crust of the same age spreading away from the transform. Magnetic anomalies are well defined out to 11 m.y. over the flanking transverse ridges and transform valley, even where layer 2 appears to be absent. The total opening rate is 1.6 cm/yr, but the arrangement of the anomalies indicates that the spreading for each ridge is asymmetric, with the ridge flanks facing the transform spreading at a rate of 1.0 cm/yr. Such an asymmetric spreading pattern requires that both the northern and southern ridges migrate away from each other at 0.2 cm/yr, thus lengthening the transform at 0.4 cm/yr for the last 11 m.y. To the north, the fracture zone valley is oriented differently from the present-day transform, indicating a paleospreading direction change at 17 m.y. from N10°E to due north-south. This change placed the transform into extension for the 11-m.y. period required for simple orthogonal ridge-transform geometry to be reestablished and produced a large transtensional basin within the transform valley. This basin was split by continued transform slip after 11 m.y., with the larger half moving to the north with the African Plate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Petrologic studies of mid-ocean ridge basalt (MORB) (e.g., Melson et al., 1975; Flower, et al., 1977; Byerly and Wright, 1978; Melson, 1979; Byerly and Sinton, 1980; Thompson, 1980) show that magmatic liquid-fraction trends are indicated by the compositions of fresh glass selvedges, usually, but not always, associated with pillow basalts. In contrast, whole-rock compositional variation will often reflect the complicating effects of syn- and post-eruptive phenocryst accumulation. Additional variation may be introduced by the reaction of basalts with seawater. While comparatively severe alteration of variable type was noted locally in the young basalts recovered across the mouth of the Gulf of California on Leg 65, most of the basalts were extremely fresh, making them ideal for studies of compositional variation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The book deals with behavior of phosphorus and its concentration in oceanic phosphorites. The major stages of marine geochemical cycle of phosphorus including its supply to sedimentary basins, precipitation from sea water, distribution and speciation in bottom sediments, diagenetic redistribution, and relation to other elements are under consideration. Formation of recent phosphorites as a culmination of phosphate accumulation in marine and oceanic sediments is examined. Distribution, structure, mineral and chemical compositions of major phosphorite deposits of various age on continental margins, as well as on submarine plateaus, uplifts and seamounts and some islands are described. A summary of trace element abundances in oceanic phosphorites is presented. Problems of phosphorite origin are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drilling on the Iberia Abyssal Plain during Ocean Drilling Program Leg 173 allowed us to recover Upper Cretaceous through Paleocene sediments at Sites 1068 and 1069 and only upper Paleocene sediments at Site 1067, which expands considerably the Upper Cretaceous to Paleocene record for this region. Of these three sites, Site 1068 recovered uppermost Cretaceous sediments as well as the most complete Paleocene record, whereas Site 1067 yielded only uppermost Paleocene sediments (Zone CP8). Site 1069 provided a rather complete upper Campanian through Maastrichtian section but a discontinuous Paleocene record. After a detailed calcareous nannofossil biostratigraphy was documented in distribution charts, we calculated mass accumulation rates for Holes 1068A and 1069A. Sediments in Hole 1068A apparently record the final stages of burial of a high basement block by turbidity flows. Accumulation rates through the Upper Cretaceous indicate relatively high rates, 0.95 g/cm**2/k.y., but may be unreliable because of the lack of datum points and/or possible hiatuses. Accumulation rates in the Paleocene section of Hole 1068A fluctuated every few million years from lower (~0.35 g/cm**2/k.y.) to higher rates (~0.85 g/cm**2/k.y.) until the latest Paleocene, when rates increased to an average of ~2.0 g/cm**2/k.y. Mass accumulation rates for the Upper Cretaceous in Hole 1069A indicate a steady rate of ~0.60 g/cm**2/k.y. from 75 to 72 Ma. There may have been one or more hiatuses between 72 and 68 Ma (combined Zone CC24 through Subzone CC25b), as indicated by the very low accumulation rate of 0.15 g/cm**2/k.y. The Paleocene section of Hole 1069A does not show the same continuous record, which may result from fluctuations in the carbonate compensation depth and poor recovery (average = 40%). Zones CP4 and CP5 are missing within a barren interval; this and numerous other barren intervals affect the precision of the nannofossil zonation and calculation of mass accumulation rates. However, in spite of these missing zones, mass accumulation rates do not seem to indicate the presence of hiatuses as the rates for this barren interval average ~1.0 g/cm**2/k.y. This study set out to test the hypothesis that a reliable biostratigraphic record could be constructed from sediments derived from turbidity flows deposited below the carbonate compensation depth. As illustrated here, not only could a reliable biostratigraphic record be determined from these sediments, but sedimentation and mass accumulation rates could also be determined, allowing inferences to be drawn concerning the sedimentary history of this passive margin. The reliability of this record is confirmed by independent verification by the establishment of a magnetostratigraphy for the same cores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ~46-m.y.-old igneous basement cored during Leg 200 in the North Pacific represents one of the few cross sections of Pacific oceanic crust with a total penetration into basalt of >100 m. The rocks, emplaced during the Eocene at a fast-spreading rate (~14 cm/yr; full rate) are strongly differentiated tholeiitic basalts (ferrobasalts) with 7-4.5 wt% MgO, relatively high TiO2 (2-3.5 wt%), and total iron as Fe2O3 (9.1-16.8 wt%). The differentiated character of these lavas is related to unusually large amounts of crystallization differentiation of plagioclase, clinopyroxene, and olivine. The lithostratigraphy of the basement (cored to ~170 meters below seafloor) is divided into three units. The deepest unit (lithologic Unit 3), is a succession of lava flows of no more that a few meters thickness each. The intermediate unit (lithologic Unit 2) is represented by intermixed thin flows and pillows, whereas the shallowest unit (lithologic Unit 1), comprises two massive flows. The rocks range from aphyric to sparsely clinopyroxene-plagioclase-phyric (phenocryst content = <3 vol%) and from holocrystalline to hypohyaline. Chilled margins of pillow fragments show holohyaline to sparsely vitrophyric textures. Site 1224 oxide minerals present a type of alteration not previously seen, where titanomagnetite is only partially destroyed and the pure magnetite component is partially removed from the mineral, leaving, in the most extreme case, a nearly pure ulvöspinel residuum. As a result of this dissolution, iron, mainly in the oxidized state, is added to the circulating solvent fluids. This means that a considerable metal source can result from low-temperature reactions throughout the upper ocean crust. The coarsest-grained lithologic Unit 1 rocks have interstitial myrmekitic intergrowths of quartz and sodic plagioclase (~An12), roughly similar in mineralogy and bulk composition to tonalite/trondhjemite veinlets in abyssal gabbros from the southwest Indian Ocean and Hess Deep, eastern equatorial Pacific. Based on idiomorphic relationships and projections into the simplified Q-Ab-Or-H2O granite ternary system, the myrmekitic intergrowths formed at the same time as, or just after, the oxide minerals coprecipitated and at low water vapor pressure (~0.5 kbar). Their compositions correspond to SiO2-oligoclase intergrowths that are considerably less potassic than dacitic glasses that erupt, although rarely, along the East Pacific Rise or that have been produced experimentally by partial melting of gabbro. Based on the crystallization history and comparison to experimental data, the original interstitial siliceous liquids resulted from late-stage immiscible separation of siliceous and iron-rich liquids. The rare andesitic lavas found along the East Pacific Rise may be hybrid rocks formed by mixing of these immiscible siliceous melts with basaltic magma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceara Rise, located east the Amazon River mouth, is covered with a thick blanket of pelagic carbonate and hemipelagic terrigenous sediment. The terrigenous component has been extracted from 57 bulk sediment samples at Ocean Drilling Program (ODP) Sites 925 and 929 on Ceara Rise to obtain a Cenozoic record of riverine discharge from northern South America. From the early Eocene to early Miocene (55-20 Ma), terrigenous accumulation was dominated by moderate amounts of generally large-grained, gray to green sediment especially depleted in elements that are enriched in post-Archaean shale (e.g. Cs, Th, Yb). However, pulsed inputs of relatively small-grained, gray to green terrigenous sediment less depleted in the above elements occurred in the late Eocene and Oligocene. The accumulation of terrigenous sediment decreased significantly until 16.5 Ma. In the middle Miocene (16.5-13 Ma), terrigenous accumulation was dominated by small amounts of small-grained, tan sediment notably depleted in Na and heavy rare earth elements. The accumulation rate of terrigenous sediment increased markedly from the latest Miocene (10 Ma) to the present day, a change characterized by deposition of gray-green sediment enriched in elements that are enriched in post-Archaean shale. Observed changes in terrigenous sediment at Ceara Rise record tectonism and erosion in northern South America. The Brazil and Guyana shields supplied sediment to the eastern South American margin until the middle Miocene (20-16.5 Ma) when a period of thrusting, shortening and uplift changed the source region, probably first to highly weathered and proximal Phanerozoic sediments. By the late Miocene (9 Ma), there was a transcontinental connection between the Andes and eastern South America. Weathering products derived from the Andes have increasingly dominated terrigenous deposition at Ceara Rise since the Late Miocene and especially since the late Pliocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A feature of Pliocene climate is the occurrence of "permanent El Niño-like" or "El Padre" conditions in the Pacific Ocean. From the analysis of sediment cores in the modern northern Benguela upwelling, we show that the mean oceanographic state off Southwest Africa during the warm Pliocene epoch was also analogous to that of a persistent Benguela "El Niño". At present these events occur when massive southward flows of warm and nutrient-poor waters extend along the coasts of Angola and Namibia, with dramatic effects on regional marine ecosystems and rainfall. We propose that the persistent warmth across the Pliocene in the Benguela upwelling ended synchronously with the narrowing of the Indonesian seaway, and the early intensification of the Northern Hemisphere Glaciations around 3.0-3.5 Ma. The emergence of obliquity-related cycles in the Benguela sea surface temperatures (SST) after 3 Ma highlights the development of strengthened links to high latitude orbital forcing. The subsequent evolution of the Benguela upwelling system was characterized by the progressive intensification of the meridional SST gradients, and the emergence of the 100 ky cycle, until the modern mean conditions were set at the end of the Mid Pleistocene transition, around 0.6 Ma. These findings support the notion that the interplay of changes in the depth of the global thermocline, atmospheric circulation and tectonics preconditioned the climate system for the end of the warm Pliocene epoch and the subsequent intensification of the ice ages.