589 resultados para 168-1029


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the regional effects of glaciation on sedimentation in the Atlantic Ocean we compare sediment types, distributions, and rates between Recent (core top) and last glacial maximum (LGM: ~18,000 years B.P.) stratigraphic levels. Based upon smear slides and carbonate analyses in 178 cores we find that glacial age carbonate content is generally lower than Recent. During both the Recent and LGM, carbonate content shows an east/west asymmetry with western basins exhibiting lower carbonate values. Input of ice-rafted detritus into the North Atlantic during LGM time interrupts this topographic control on carbonate distribution considerably farther south than at present; in the South Atlantic this effect is minor. Comparison of LGM and Recent sediment distributions indicates that the LGM seafloor was dominated by biogenic oozes, calcareous clays, and clays, while the Recent is dominated by biogenic oozes and marls. Coarse-grained detritus is much more prevalent in LGM sediments, derived not only from glacial input but also from fluvial and aeolian sources. Sedimentation rates, calculated from LGM to Recent sediment thickness in cores, are <4 cm/1000 yr for most of the ocean. Higher rates are typical of the continental margin off the Amazon River, the North American Basin, and a small region off west equatorial Africa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global databases of calcium carbonate concentrations and mass accumulation rates in Holocene and last glacial maximum sediments were used to estimate the deep-sea sedimentary calcium carbonate burial rate during these two time intervals. Sparse calcite mass accumulation rate data were extrapolated across regions of varying calcium carbonate concentration using a gridded map of calcium carbonate concentrations and the assumption that accumulation of noncarbonate material is uncorrelated with calcite concentration within some geographical region. Mean noncarbonate accumulation rates were estimated within each of nine regions, determined by the distribution and nature of the accumulation rate data. For core-top sediments the regions of reasonable data coverage encompass 67% of the high-calcite (>75%) sediments globally, and within these regions we estimate an accumulation rate of 55.9 ± 3.6 x 10**11 mol/yr. The same regions cover 48% of glacial high-CaCO3 sediments (the smaller fraction is due to a shift of calcite deposition to the poorly sampled South Pacific) and total 44.1 ± 6.0 x 10**11 mol/yr. Projecting both estimates to 100 % coverage yields accumulation estimates of 8.3 x 10**12 mol/yr today and 9.2 x 10**12 mol/yr during glacial time. This is little better than a guess given the incomplete data coverage, but it suggests that glacial deep sea calcite burial rate was probably not considerably faster than today in spite of a presumed decrease in shallow water burial during glacial time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an improved database of planktonic foraminiferal census counts from the Southern Hemisphere Oceans (SHO) from 15°S to 64°S. The SHO database combines 3 existing databases. Using this SHO database, we investigated dissolution biases that might affect faunal census counts. We suggest a depth/[DCO3]2- threshold of ~3800 m/[DCO3]2- = ~-10 to -5 µmol/kg for the Pacific and Indian Oceans, and ~4000 m/[DCO3]2- = ~0 to 10 µmol/kg for the Atlantic Ocean, under which core-top assemblages can be affected by dissolution and are less reliable for paleo-sea surface temperature (SST) reconstructions. We removed all core-tops beyond these thresholds from the SHO database. This database has 598 core-tops and is able to reconstruct past SST variations from 2° to 25.5°C, with a root mean square error of 1.00°C, for annual temperatures. To inspect dissolution affects SST reconstruction quality, we tested the data base with two "leave-one-out" tests, with and without the deep core-tops. We used this database to reconstruct Summer SST (SSST) over the last 20 ka, using the Modern Analog Technique method, on the Southeast Pacific core MD07-3100. This was compared to the SSST reconstructed using the 3 databases used to compile the SHO database. Thus showing that the reconstruction using the SHO database is more reliable, as its dissimilarity values are the lowest. The most important aspect here is the importance of a bias-free, geographic-rich, database. We leave this dataset open-ended to future additions; the new core-tops must be carefully selected, with their chronological frameworks, and evidence of dissolution assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sensitivity of the tropics to climate change, particularly the amplitude of glacial-to-interglacial changes in sea surface temperature (SST), is one of the great controversies in paleoclimatology. Here we reassess faunal estimates of ice age SSTs, focusing on the problem of no-analog planktonic foraminiferal assemblages in the equatorial oceans that confounds both classical transfer function and modern analog methods. A new calibration strategy developed here, which uses past variability of species to define robust faunal assemblages, solves the no-analog problem and reveals ice age cooling of 5° to 6°C in the equatorial current systems of the Atlantic and eastern Pacific Oceans. Classical transfer functions underestimated temperature changes in some areas of the tropical oceans because core-top assemblages misrepresented the ice age faunal assemblages. Our finding is consistent with some geochemical estimates and model predictions of greater ice age cooling in the tropics than was inferred by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981] and thus may help to resolve a long-standing controversy. Our new foraminiferal transfer function suggests that such cooling was limited to the equatorial current systems, however, and supports CLIMAP's inference of stability of the subtropical gyre centers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of the tropical ocean to global climate change and the extent of sea ice in the glacial nordic seas belong to the great controversies in paleoclimatology. Our new reconstruction of peak glacial sea surface temperatures (SSTs) in the Atlantic is based on census counts of planktic foraminifera, using the Maximum Similarity Technique Version 28 (SIMMAX-28) modern analog technique with 947 modern analog samples and 119 well-dated sediment cores. Our study compares two slightly different scenarios of the Last Glacial Maximum (LGM), the Environmental Processes of the Ice Age: Land, Oceans, Glaciers (EPILOG), and Glacial Atlantic Ocean Mapping (GLAMAP 2000) time slices. The comparison shows that the maximum LGM cooling in the Southern Hemisphere slightly preceeded that in the north. In both time slices sea ice was restricted to the north western margin of the nordic seas during glacial northern summer, while the central and eastern parts were ice-free. During northern glacial winter, sea ice advanced to the south of Iceland and Faeroe. In the central northern North Atlantic an anticyclonic gyre formed between 45° and 60°N, with a cool water mass centered west of Ireland, where glacial cooling reached a maximum of >12°C. In the subtropical ocean gyres the new reconstruction supports the glacial-to-interglacial stability of SST as shown by CLIMAP Project Members (CLIMAP) [1981]. The zonal belt of minimum SST seasonality between 2° and 6°N suggests that the LGM caloric equator occupied the same latitude as today. In contrast to the CLIMAP reconstruction, the glacial cooling of the tropical east Atlantic upwelling belt reached up to 6°-8°C during Northern Hemisphere summer. Differences between these SIMMAX-based and published U37[k]- and Mg/Ca-based equatorial SST records are ascribed to strong SST seasonalities and SST signals that were produced by different planktic species groups during different seasons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a data set of 738 planktonic foraminiferal species counts from sediment surface samples of the eastern North Atlantic and the South Atlantic between 87°N and 40°S, 35°E and 60°W including published Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) data. These species counts are linked to Levitus's [1982] modern water temperature data for the four caloric seasons, four depth ranges (0, 30, 50, and 75 m), and the combined means of those depth ranges. The relation between planktonic foraminiferal assemblages and sea surface temperature (SST) data is estimated using the newly developed SIMMAX technique, which is an acronym for a modern analog technique (MAT) with a similarity index, based on (1) the scalar product of the normalized faunal percentages and (2) a weighting procedure of the modern analog's SSTs according to the inverse geographical distances of the most similar samples. Compared to the classical CLIMAP transfer technique and conventional MAT techniques, SIMMAX provides a more confident reconstruction of paleo-SSTs (correlation coefficient is 0.994 for the caloric winter and 0.993 for caloric summer). The standard deviation of the residuals is 0.90°C for caloric winter and 0.96°C for caloric summer at 0-m water depth. The SST estimates reach optimum stability (standard deviation of the residuals is 0.88°C) at the average 0- to 75-m water depth. Our extensive database provides SST estimates over a range of -1.4 to 27.2°C for caloric winter and 0.4 to 28.6°C for caloric summer, allowing SST estimates which are especially valuable for the high-latitude Atlantic during glacial times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediment samples from the Ontong-Java Plateau in the Pacific and the 90° east ridge in the Indian Ocean were used to investigate whether shell size and early diagenesis affect d11B of the symbiont-bearing planktonic foraminifer Globigerinoides sacculifer. In pristine shells from both study locations we found a systematic increase of d11B and Mg/Ca with shell size. Shells in the sieve size class 515-865 µm revealed d11B values +2.1 to +2.3 per mil higher than shells in the 250-380 µm class. This pattern is most likely due to differences in symbiont photosynthetic activity and its integrated effect on the pH of the foraminiferal microenvironment. We therefore suggest smaller individuals must live at approximately 50-100 m water depth where ambient light levels are lower. Using the empirical calibration curve for d11B in G. sacculifer, only shells larger than 425 µm reflect surface seawater pH. Partial dissolution of shells derived from deeper sediment cores was determined by shell weight analyses and investigation of the shell surface microstructure by scanning electron microscopy. The d11B in partially dissolved shells is up to 2 per mil lower relative to pristine shells of the same size class. In agreement with a relatively higher weight loss in smaller shells, samples from the Ontong-Java Plateau show a more pronounced dissolution effect than larger shells. On the basis of the primary size effect and potential postdepositional dissolution effects, we recommend the use of shells that are visually pristine and, in the case of G. sacculifer, larger than 500 ?m for paleoreconstructions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At least two modes of glacial-interglacial climate change have existed within the tropical Atlantic Ocean during the last 20,000 years. The first mode (defined by cold glacial and warm interglacial conditions) occurred symmetrically north and south of the equator and dominated the eastern boundary currents and tropical upwelling areas. This pattern suggests that mode 1 is driven by a glacial modification of surface winds in both hemispheres. The second mode of oceanic climate change, defined by temperature extremes centered on the deglaciation, was hemispherically asymmetrical, with the northern tropical Atlantic relatively cold and the southern tropical Atlantic relatively warm during deglaciation. A likely cause for this pattern of variation is a reduction of the presently northward cross-equatorial heat flux during deglaciation. No single mechanism accounts for all the data. Potential contributors to oceanic climate changes are linkage to high-latitude climates, modification of monsoonal winds by ice sheet and/or insolation changes, atmospheric CO2 and greenhouse effects, indirect effects of glacial meltwater, and variations in thermohaline overturn of the oceans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Campbell Plateau occupies a key position in the southwest Pacific sector of the Southern Ocean. The plateau confines and steers the Antarctic Circumpolar Current (ACC) along its flanks, isolating the Subantarctic plateau from cold polar waters. Oxygen and carbon isotope records from Campbell Plateau cores provide new records of water mass stratification for the past 130 kyr. During glacial climes, strengthening of the Subantarctic Front (SAF) caused waters over the plateau flanks to be deeply mixed and ~3°C cooler. Waters of the plateau interior remained stratified and isolated from the cold southern waters. In the west, waters cooled markedly (~4°C) owing to reduced entrainment of Tasman Sea water. Marked cooling also occurred north of Campbell Plateau under increased entrainment of polar water by a branch of the SAF. The ACC remained along the flanks of Campbell Plateau during the last interglacial, when interior waters were stratified and warmer by ~1°C than now.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During Leg 168 a transect was drilled across the eastern flank of the Juan de Fuca Ridge in an area where the volcanic basement is covered by sediments of variable thickness. Samples of basement volcanic rocks were recovered from nine locations along the transect, where the basement sediment interface is presently heated to temperatures varying from 15° to 64°C. Altered rocks with secondary calcium carbonate were common at four of the sites, where present-day temperatures range from 38° to 64°C. Fluid inclusions in aragonite suggest that the mineral precipitated from an aqueous fluid of seawater salinity at temperatures well below 100°C. The chemical compositions of secondary calcite and aragonite were determined with both an electron microprobe and a laser-ablation inductively coupled plasma-mass spectroscopy (LA-ICP-MS) microprobe. These two techniques yielded consistent analyses of the same minor elements (Mg and Sr) in the same specimens. The combined results show that secondary aragonites contain very little Mg, Mn, Fe, Co, Ni, Cu, Zn, Rb, La, Ce, Pb, or U, yet they contain significant Sr. In contrast, secondary calcites contain significant Mg, Mn, Fe, Ni, Cu, Zn, and Pb, yet very little Co, Rb, Sr, La, Ce, or U. Secondary calcium carbonates provide subseafloor reservoirs for some minor and trace elements. Replacement of aragonite by calcite should result in a release of Sr, Rb, and Zn to solution, and it provides a sink for Mg, Mn, Ni, Cu, Zn, and Pb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drilling a complete deep crustal section has been a primary yet elusive goal since the inception of scientific ocean drilling. In situ ocean crustal sections would contribute enormously to our understanding of the formation and subsequent evolution of the ocean crust, in particular the interplay between magmatic, hydrothermal, and tectonic processes. Ocean Drilling Program (ODP) Leg 206 was the first of a multileg project to drill an in situ crustal section that penetrated the gabbroic rocks of the Cocos plate (6°44.2'N, 91°56.1'W), which formed ~15 m.y. ago on the East Pacific Rise during a period of superfast spreading (>200 mm/yr) (Wilson, Teagle, Acton, et al., 2003, doi:10.2973/odp.proc.ir.206.2003). During Leg 206, the upper 500 m of basement was cored in Holes 1256C and 1256D with moderate to high recovery rates. The igneous rocks recovered are predominantly thin (10 cm to 3 m) basalt flows separated by chilled margins. There are also several massive flows (>3 m thick), although their abundance decreases with depth in Hole 1256D, as well as minor pillow basalts, hyaloclastites, and rare dikes. The lavas have been slightly (<10%) altered by low-temperature hydrothermal fluids, which resulted in pervasive dark gray background alteration and precipitation of saponite, pyrite, silica, celadonite, and calcium carbonate veins. Here we present a geochemical analysis of the CaCO3 recovered from cores. The compositions of ridge flank fluids within superfast spreading crust will be determined from these data, following the approach of Hart et al. (1994, doi:10.1029/93JB02035), Yatabe et al. (2000, doi:10.2973/odp.proc.sr.168.003.2000), and Coggon et al. (2004, doi:10.1016/S0012-821X(03)00697-6).