596 resultados para 125-778
Resumo:
The high-pressure, low-temperature metamorphic rocks known as blueschists have long been considered to form in subduction zones, where the descent of a relatively cold slab leads to the occurrence of unusually low temperatures at mantle pressures. Until now, however, the link between blueschist-facies rocks and subduction zones has been indirect, relying on a spatial association of blueschists with old subduction complexes, and estimates of the geothermal gradients likely to exist in subduction zones. Here we strengthen this link, by reporting the discovery of blueschist-facies minerals (lawsonite, aragonite, sodic pyroxene and blue amphibole) in clasts from a serpentinite seamount in the forearc of the active Mariana subduction zone. The metamorphic conditions estimated from the mineral compositions are 150-250 °C and 5-6 kbar (16-20 km depth). The rocks must have been entrained in rising serpentine mud diapirs, and extruded from mud volcanoes onto the sea floor. Further study of these rocks may provide new insight into the tectonics of trench-forearc systems, and in particular, the processes by which blueschist-facies clasts come to be associated with forearc sediments in ancient subduction complexes.
Resumo:
Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 33 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer, and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north, and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.
Resumo:
Approaches to quantify the organic carbon accumulation on a global scale generally do not consider the small-scale variability of sedimentary and oceanographic boundary conditions along continental margins. In this study, we present a new approach to regionalize the total organic carbon (TOC) content in surface sediments (<5 cm sediment depth). It is based on a compilation of more than 5500 single measurements from various sources. Global TOC distribution was determined by the application of a combined qualitative and quantitative-geostatistical method. Overall, 33 benthic TOC-based provinces were defined and used to process the global distribution pattern of the TOC content in surface sediments in a 1°x1° grid resolution. Regional dependencies of data points within each single province are expressed by modeled semi-variograms. Measured and estimated TOC values show good correlation, emphasizing the reasonable applicability of the method. The accumulation of organic carbon in marine surface sediments is a key parameter in the control of mineralization processes and the material exchange between the sediment and the ocean water. Our approach will help to improve global budgets of nutrient and carbon cycles.