582 resultados para 117-729
Resumo:
Calcareous nannofossils were studied in 574 Neogene samples recovered from eight sites drilled in block-faulted basins on the continental margin of Oman. This portion of the Arabian Sea experiences seasonal upwelling associated with the southwest monsoon. Not surprisingly, some of the more typical Neogene warm-water nannoplankton are either missing entirely or are extremely rare in these sediments. Coccolithus pelagicus, a typical cold-water indicator, is extremely abundant in many samples of late Pliocene to early Pleistocene age. These intervals correspond to periods of Northern Hemisphere glaciation. Reworked Late Cretaceous and Cenozoic nannofossils are found in a majority of the samples. They were probably carried from the Arabian Peninsula or the continent of Africa on strong southwest summer winds. Ages for the various nannofossil events were calculated by projecting the nannofossil datums onto the magnetostratigraphic scale for Sites 724, 727, and 728. These are the first ages for the various nannofossil datums derived from Oman Margin sediments. The following ages have been calculated for these nannofossil events: FAD Emiliania huxleyi, 0.23 Ma; LAD Pseudoemiliania lacunosa, 0.38 Ma; FAD Helicosphaera inversa, 0.42 Ma; top of acme of Reticulofenestra sp. A, 0.70 Ma; FAD Gephyrocapsaparallela, 0.85 Ma; LAD Gephyrocapsa spp. (large), 1.07 Ma; LAD Helicosphaera sellii, 1.34 Ma; LAD Calcidiscus macintyrei, 1.47 Ma; FAD Gephyrocapsa oceanica, 1.53 Ma; FAD Gephyrocapsa caribbeanica, 1.80 Ma; LAD Discoaster brouweri, 2.03 Ma; LAD Discoasterpentaradiatus, 2.31 Ma; LAD Discoaster surculus, 2.42; LAD Discoaster tamalis, 2.77 Ma; LAD Sphenolithus abies, 3.44 Ma; and LAD Reticulofenestra pseudoumbilica, 3.44 Ma.
Resumo:
Continuous magnetostratigraphy and biostratigraphy made it possible to construct a detailed late Neogene record of 87Sr/86Sr isotopic ratios of ocean water, as measured in the tests of planktonic foraminifers. Sediments recovered during Leg 117, in the western Arabian Sea, provide a continuous, high resolution sedimentary record from the early Miocene to present. The late Miocene to Recent is marked by rapidly increasing 87Sr/86Sr ratios in seawater, which results in a chronostratigraphical resolution varying from 0.2 Ma to 1.5 Ma. The 87Sr/86Sr seawater curve has a stepwise character similar to the one determined by DePaolo on Site 590B, in the Tasman Sea, and to the one determined by McKenzie on Site 653A, in the Mediterranean, confirming its use as a chronostratigraphic tool for this time span. Periods of rapid increase in the 87Sr/86Sr isotopic ratio of seawater are correlated with important changes in tectonic and climatic conditions. Experiments showed that bulk carbonate sediment samples have differing 87Sr/86Sr ratios from those of planktonic and benthic foraminifers from the same depth.
Resumo:
A total of 21 calcareous nannofossil datums was found in the upper Pliocene and Quaternary sediments recovered from the ocean floor of the North Atlantic during DSDP Leg 94. These datums were correlated to magnetostratigraphy, and ages were estimated by interpolation between magnetic reversals. Calcareous nannofossil assemblages from 549 samples recovered during ODP Leg 117 were studied in order to estimate the age of the sediments of Sites 720, 721, 722, and 731 drilled at the Indus Fan and the Owen Ridge in the Arabian Sea, Indian Ocean. We also showed that the datums above mentioned can be traced into the Indian Ocean. Two new species, namely Helicosphaera omanica and Reticulofenestra ampla, are described.
Resumo:
Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 33 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer, and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north, and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.
Resumo:
Approaches to quantify the organic carbon accumulation on a global scale generally do not consider the small-scale variability of sedimentary and oceanographic boundary conditions along continental margins. In this study, we present a new approach to regionalize the total organic carbon (TOC) content in surface sediments (<5 cm sediment depth). It is based on a compilation of more than 5500 single measurements from various sources. Global TOC distribution was determined by the application of a combined qualitative and quantitative-geostatistical method. Overall, 33 benthic TOC-based provinces were defined and used to process the global distribution pattern of the TOC content in surface sediments in a 1°x1° grid resolution. Regional dependencies of data points within each single province are expressed by modeled semi-variograms. Measured and estimated TOC values show good correlation, emphasizing the reasonable applicability of the method. The accumulation of organic carbon in marine surface sediments is a key parameter in the control of mineralization processes and the material exchange between the sediment and the ocean water. Our approach will help to improve global budgets of nutrient and carbon cycles.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Interstitial water analyses made at 12 sites during Leg 117 are used to define the nature of diagenetic reactions in organic-rich sediments on the Owen Ridge and Oman Margin. Minor variations in chloride concentration profiles are ascribed to past changes in bottom water salinity at two mid-depth margin sites and to upward migration of low salinity water at another. There is no evidence for subsurface brine movement, unlike the case on the Peru Margin. Dolomitization is widespread and accounts for the depletions of magnesium observed in pore waters at variable depths at nearly all sites. The mineral occurs both as disseminated euhedral limpid crystals and, in at least one location, in massive stringers. Formation of the latter is suggested to reflect precipitation during sea level transgressions when the sedimentation rate was low, but when productivity was high. Authigenic carbonate fluorapatite is also widespread, the phosphorus being derived from the breakdown of organic matter. Sulfate is quantitatively depleted at depth at most locations but the rate of depletion is markedly less than that observed on the Peru Margin where sedimentation is also similarly influenced by high rates of upwelling. The reason for this contrast is not clear and merits further investigation.
Resumo:
Preliminary data on dissolved organic carbon (DOC) and dissolved sugars in interstitial water samples collected at Sites 618, 619, and 623 of Deep Sea Drilling Project Leg 96 are presented. At Site 618 in Orca Basin, the DOC content of the interstitial water peaks in the hypersaline sulfate reduction zone. The sugar content reaches a maximum and the DOC content begins to decrease at the depth of methane gas generation. Below that depth, the sugar and DOC contents are about constant. At Site 619 in Pigmy Basin, the DOC content increases slightly with depth in the sulfate reduction and the methane fermentation zones. The sugar content is lower in the sulfate reduction zone than in the methane fermentation zone; sugar concentration increases and fluctuates with methane gas percentages within the methane fermentation zone. At Site 623 in the lower fan region of the Mississippi Fan, there is no sulfate reduction zone. The DOC and sugar contents of the interstitial water are almost constant with depth.
Resumo:
Site 723 is located in a water depth of 808 m at the center of the oxygen minimum zone and the middle part of the main thermocline on the Oman Margin. Oxygen isotope curves of planktonic delta18OP and benthic delta18OB can be traced back continuously to Stage 23 with high resolution measurements. A tentative correlation to Stage 53 has been tried using oxygen isotope stratigraphy. The amplitudes of the fluctuations of the benthic delta18OB curve are small, compared with the planktonic delta18OP curve. The delays of benthic oxygen isotopes delta18OB related to the planktonic delta18OP appear in the transgressive stages. Carbon isotopes of benthic delta13CB and planktonic delta13CP generally show an inverse correlation with oxygen isotope values delta18OB and delta18OB and delta18OP, however, the changes of delta13C are more gradual than those of delta18O during transgressive stages in spite of the synchronized changes of delta13C with those of delta18O during regressive stages. The difference of oxygen isotope between benthic and planktonic foraminifers represents the degree of pushing up the thermocline by upwelling, and the difference of carbon isotope represents the relative amount of upwelling Sigma[CO2] to the biological uptake in the surface water. These isotopic differences can be used as indicators of upwelling and show strong upwelling in the interglacial and weak upwelling in the glacial stages. The organic carbon content is correlated with the isotopic upwelling indicators, and higher content is correlated with the isotopic upwelling indicators and higher content appears in the interglacial stages. The calculated rate of sedimentation based on oxygen isotope stratigraphy in glacial stages is significantly high, two to four times that of interglacial stages, and the absolute flux of fluvial sediments with variability of lithofacies increased in the glacial stage. The present glacial-interglacial cycle with the fluctuation of upwelling relating to the southwest monsoon can be traced back to Stage 8, 250 ka. From Stage 8 to 12, 250-450 ka, the upwelling indicator of oxygen isotope difference did not show such distinct cyclicity. For Stages 12-15, 450-600 ka, the upwelling can be estimated as strong as in interglacial stage of the present cycles, with slightly weak upwelling in the glacial stage. This upwelling and climate can be traced back to the late Pliocene. The strongest upwelling can be estimated in the Pliocene-Pleistocene time by the isotopic indicators and the high organic carbon content.