609 resultados para Bloody Brook Monument (South Deerfield, Mass.)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pleistocene summer sea-surface temperatures (SSST) have been reconstructed on a composite core section recovered in the Subantarctic Zone of the Southern Ocean from planktonic foraminifers applying the Modern Analog Technique. The composite consists of Core PS2489-2 and the sections recovered at ODP Site 1090, and documents the last 1.83 Ma. Three distinct climatic periods can be identified that mirror the Pleistocene development of the Southern Ocean hydrography. Cold climatic conditions prevailed at 43°S during glacial as well as during interglacial periods during the early Pleistocene (1.83-0.87 Ma), indicating a northward shift of isotherms that characterize the present-day Polar Front Zone by about 7° of latitude. Evidence shows a strong linkage between Southern Ocean and low latitude climate during that interval time. Between the Mid-Pleistocene Revolution (ca. 0.9 Ma) and the Mid-Brunhes Event (ca. 0.4 Ma), we observe higher amplitude fluctuations in the SSST between glacial and interglacial periods, corresponding to the temperature range between the present Polar Front and Subantarctic Front. These climatic variations have been related to changes in the northern hemisphere ice sheets. The past 0.4 Ma are characterized by strong SSST variations, of up to 8°C, between glacials and interglacials. Only during the climatic optima (stages 11.3, 9.3, 7.5, 7.1, 5.5, and the early Holocene), SSST exceeded present SSST at the core locality (10.2°C). Although the carbonate dissolution record exhibits high variability during the Pleistocene, it can be shown that SSST estimates were not significantly biased. The Mid-Brunhes dissolution cycle as well as the Mid-Pleistocene enhanced carbonate preservation appear to belong to a global long-term variability in carbonate preservation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment patterns such as texture, composition, and facies from three selected areas of the Antarctic continental margin of the Weddell Sea are discussed in relation to environmental variations of the Quaternary hydrosphere and kryosphere. Advance and retreat of ice shelves as well as oscillations in sea ice coverage are reflected by particular sediment facies. The distribution of ice-rafted detritus tracks the Antarctic Coastal Current, and the Weddell Sea Bottom water contour current can be recognized by its distinctive winnowing and erosion pattern. Distribution and abundance of biogenic sediment components are mainly controlled by duration of sea ice coverage reflecting the long-term climatic evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Without doubt, global climate change is directly linked to the anthropogenic release of greenhouse gases such as carbon dioxide (CO2) and methane (UN IPCC-Report 2007). Therefore, research efforts to comprehend the global carbon cycle have increased during the last years. In the context of the observed changes, it is of particular interest to decipher the role of the hydro-, bio- and atmospheres and how the different compartments of the earth system are affected by the increase of atmospheric CO2. Due to its huge carbon inventory, the marine carbon cycle represents the most important component in this respect. Numerous findings suggest that the Southern Ocean plays a key role in terms of oceanic CO2 uptake. However, an exact quantification of such fluxes of material is hard to achieve for large areas, not least on account of the inaccessibility of this remote region. In particular, there exist so far only few accurate data for benthic carbon fluxes. The latter can be derived from high resolution pore water oxygen profiles, as one possible method. However the ex situ flux determinations carried out on sediment cores, tend to suffer from temperature and pressure artefacts. Alternatively, oxygen microprofiles can be measured in situ, i.e. at the seafloor. Until now, no such data have been published for the Southern Ocean. During the Antarctic Expedition ANT-XXI/4, within the framework of this thesis, in situ and ex situ oxygen profiles were measured and used to derive benthic organic carbon fluxes. Having both types of measurements from the same locations, it was possible to establish a depth-related correction function which was applied subsequently to revise published and additional unpublished carbon fluxes to the seafloor. This resulted in a consistent data base of benthic carbon inputs covering many important sub-regions of the Southern Ocean including the Amundsen and Bellingshausen Seas (southern Pacific), Scotia and Weddell Seas (southern South Atlantic) as well as the Crozet Basin (southern Indian Ocean). Including additional locations on the Antarctic Shelf, there are now 134 new and revised measurement locations, covering almost 180° of the Southern Ocean, for which benthic organic carbon fluxes and sedimentary oxygen penetration depth values are available. Further, benthic carbon fluxes were empirically related to dominant diatom distributions in surface sediments as well as to long-term remotely sensed chlorophyll-a estimates. The comparison of these results with benthic carbon fluxes of the entire Atlantic Ocean reveals significantly higher export efficiencies for the Southern Ocean than have previously been assumed, especially for the area of the opal belt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributional patterns of glaciological parameters at the Colle Gnifetti core drilling site are described and their interrelationships are brietly discussed. Observations within a stake network established in 1980 furnish information about snow accumulation (short term balance), submergence velocity of ice tlow (long term balance), ram hardness (melt layer stratigraphy), and firn temperature. In addition, a numerical model was used to estimate local variations of available radiant energy. Melt layer formation is considerably more intensive on the south facing parts of the firn saddie where incoming radiation is high. These melt layers seem to effectively protect some of the fallen snow from wind erosion. As a result, balance ist up to one order of magnitude larger on south facing slopes. Heat applied to the surface is therefore positively correlated with balance, whereas the relation between solar radiation and firn temperature is less dear. Distributional patterns of submergence velocity confirm that the observed spatial variability of surface balance is representative for longer time periods and greatly intluences the time scale and the stratigraphy of firn and ice cores from Colle Gnifetti.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in surface water hydrography in the Southern Ocean (eastern Atlantic sector) could be reconstructed on the basis of isotope-geochemical and micropaleontological studies. A total of 75 high quality multicorer sediment surface samples from the southern South Atlantic Ocean and three Quaternary sediment cores, taken on a meridional transect across the Antarctic Circumpolar Current, have been investigated. The results of examining stable oxygen isotope compositions of 24 foraminiferal species and morphotypes were compared to the near-surface hydrography. The different foraminifera have been divided into four groups living at different depths in the upper water column. The 8180 differences between shallow-living (e.g. G. bulloides, N. pachyderma) and deeper-dwelling (e. g. G. inflata) species reflect the measured temperature gradient of the upper 250 m in the water column. Thus, the 6180 difference between shallow-living and deeper-living foraminifera can be used as an indicator for the vertical temperature gradient in the surface water of the Antarctic Circumpolar Current, which is independent of ice volume. All planktonic foraminifera in the surface sediment samples have been counted. 27 species and morphotypes have been selected, to form a reference data Set for statistical purposes. By using R- and Q-mode principal component analysis these planktonic foraminifera have been divided into four and five assemblages, respectively. The geographic distribution of these assemblages is mainly linked to the temperature of sea-surface waters. The five assemblages (factors) of the Q-mode principal component analysis account for 97.l % of the variance of original data. Following the transferfunction- technique a multiple regression between the Q-mode factors and the actual mean sea-surface environmental parameters resulted in a set of equations. The new transfer function can be used to estimate past sea-surface seasonal temperatures for paleoassemblages of planktonic foraminifera with a precision of approximately ±1.2°C. This transfer function F75-27-5 encompasses in particular the environmental conditions in the Atlantic sector of the Antarctic Circumpolar Current. During the last 140,000 years reconstructed sea-surface temperatures fluctuated in the present northern Subantarctic Zone (PS2076-1/3) at an amplitude of up to 7.5°C in summer and of up to 8.5°C in winter. In the present Polarfrontal Zone (PS1754-1) these fluctuations between glacials and interglacials show lower temperatures from 2.5 to 8.5°C in summer and from 1.0 to 5.0°C in winter, respectively. Compared to today, calculated oxygen isotope temperature gradients in the present Subantarctic Zone were lower during the last 140,000 years. This is an indicator for a good mixing of the upper water column. In the Polarfrontal Zone also lower oxygen isotope temperature gradients were found for the glacials 6, 4 and 2. But almost similar temperature gradients as today were found during the interglacial stages 5, 3 and the Holocene, which implicates a mixing of the upper water column compared to present. Paleosalinities were reconstructed by combining d18O-data and the evaluated transfer function paleotemperatures. Especially in the present Polarfrontal Zone (PS1754-1) and in the Antarctic Zone (PS1768-8), a short-term reduction of salinity up to 4 %o, could be detected. This significant reduction in sea-surface water salinity indicates the increased influx of melt-water at the beginning of deglaciation in the southern hemisphere at the end of the last glacial, approximately 16,500-13,000 years ago. The reconstruction of environmental Parameters indicates only small changes in the position of the frontal Systems in the eastern sector of the Antarctic Circumpolar Current during the last 140,000 years. The average position of the Subtropical Front and Subantarctic Front shifted approximately three latitudes between interglacials and glacials. The Antarctic Polar Front shifted approximately four latitudes. But substantial modifications of this scenario have been interpreted for the reconstruction of cold sea-surface temperatures at 41Â S during the oxygen isotope stages 16 and 14 to 12. During these times the Subtropical Front was probably shified up to seven latitudes northwards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary productivity (14C) and mass flux measurements using a free-drifting sediment trap deployed at 900 m were made at four stations in the Pacific Ocean between 12°N and 6°S at 153°W. The latitudinal variations in productivity were consistent with historical patterns showing the equator as a zone of high production and the oligotrophic waters north of the equatorial region as an area of low productivity. The correlation coefficient between the two sets of independent measurements was 0.999, indicating that in this oceanic area the activity of the primary producers was closely related to the total mass flux. A re-examination of historical data suggests that the downward flux of particulate organic carbon varies in direct proportion to the quotient of surface primary production raised to the 1.4 power and depth raised to the 0.63 power.