556 resultados para 2 sigma range cal. age
Resumo:
The circulation and internal structure of the oceans exert a strong influence on Earth's climate because they control latitudinal heat transport and the segregation of carbon between the atmosphere and the abyss (Sigman et al., 2010, doi:10.1038/nature09149). Circulation change, particularly in the Atlantic Ocean, is widely suggested (Bartoli et al., 2005, doi:10.1016/j.epsl.2005.06.020; Haug and Tiedemann, 1998, doi:10.1038/31447; Woodard et al., 2014, doi:10.1126/science.1255586; McKay et al., 2012, doi:10.1073/pnas.1112248109) to have been instrumental in the intensification of Northern Hemisphere glaciation when large ice sheets first developed on North America and Eurasia during the late Pliocene, approximately 2.7 million years ago (Bailey et al., 2013, doi:10.1016/j.quascirev.2013.06.004). Yet the mechanistic link and cause/effect relationship between ocean circulation and glaciation are debated. Here we present new records of North Atlantic Ocean structure using the carbon and neodymium isotopic composition of marine sediments recording deep water for both the Last Glacial to Holocene (35-5 thousand years ago) and the late Pliocene to earliest Pleistocene (3.3-2.4 million years ago). Our data show no secular change. Instead we document major southern-sourced water incursions into the deep North Atlantic during prominent glacials from 2.7 million years ago. Our results suggest that Atlantic circulation acts as a positive feedback rather than as an underlying cause of late Pliocene Northern Hemisphere glaciation. We propose that, once surface Southern Ocean stratification (Sigman, et al., 2004, doi:10.1038/nature02357) and/or extensive sea-ice cover (McKay et al., 2012, doi:10.1073/pnas.1112248109) was established, cold-stage expansions of southern-sourced water such as those documented here enhanced carbon dioxide storage in the deep ocean, helping to increase the amplitude of glacial cycles.
Resumo:
An emerging approach to downscaling the projections from General Circulation Models (GCMs) to scales relevant for basin hydrology is to use output of GCMs to force higher-resolution Regional Climate Models (RCMs). With spatial resolution often in the tens of kilometers, however, even RCM output will likely fail to resolve local topography that may be climatically significant in high-relief basins. Here we develop and apply an approach for downscaling RCM output using local topographic lapse rates (empirically-estimated spatially and seasonally variable changes in climate variables with elevation). We calculate monthly local topographic lapse rates from the 800-m Parameter-elevation Regressions on Independent Slopes Model (PRISM) dataset, which is based on regressions of observed climate against topographic variables. We then use these lapse rates to elevationally correct two sources of regional climate-model output: (1) the North American Regional Reanalysis (NARR), a retrospective dataset produced from a regional forecasting model constrained by observations, and (2) a range of baseline climate scenarios from the North American Regional Climate Change Assessment Program (NARCCAP), which is produced by a series of RCMs driven by GCMs. By running a calibrated and validated hydrologic model, the Soil and Water Assessment Tool (SWAT), using observed station data and elevationally-adjusted NARR and NARCCAP output, we are able to estimate the sensitivity of hydrologic modeling to the source of the input climate data. Topographic correction of regional climate-model data is a promising method for modeling the hydrology of mountainous basins for which no weather station datasets are available or for simulating hydrology under past or future climates.
Resumo:
The Atlantis Massif (Mid-Atlantic Ridge, 30°N) is an oceanic core complex marked by distinct variations in crustal architecture, deformation and metamorphism over distances of at least 5 km. We report Sr and Nd isotope data and Rare Earth Element (REE) concentrations of gabbroic and ultramafic rocks drilled at the central dome (IODP Hole 1309D) and recovered by submersible from the southern ridge of the massif that underlie the peridotite-hosted Lost City Hydrothermal Field. Systematic variations between the two areas document variations in seawater penetration and degree of fluid-rock interaction during uplift and emplacement of the massif and hydrothermal activity associated with the formation of Lost City. Homogeneous Sr and Nd isotope compositions of the gabbroic rocks from the two areas (87Sr/86Sr: 0.70261-0.70429 and epsilon-Nd: +9.1 to +12.1) indicate an origin from a depleted mantle. At the central dome, serpentinized peridotites are rare and show elevated seawater-like Sr isotope compositions related to serpentinization at shallow crustal levels, whereas unaltered mantle isotopic compositions preserved in the gabbroic rocks attest to limited seawater interaction at depth. This portion of the massif remained relatively unaffected by Lost City hydrothermal activity. In contrast, pervasive alteration and seawater-like Sr and Nd isotope compositions of serpentinites at the southern wall (87Sr/86Sr: 0.70885-0.70918; epsilon-Nd: -4.7 to +11.3) indicate very high fluid-rock ratios (~20 and up to 10**6) and enhanced fluid fluxes during hydrothermal circulation. Our studies show that Nd isotopes are most sensitive to high fluid fluxes and are thus an important geochemical tracer for quantification of water-rock ratios in hydrothermal systems. Our results suggest that high fluxes and long-lived serpentinization processes may be critical to the formation of Lost City-type systems and that normal faulting and mass wasting in the south facilitate seawater penetration necessary to sustain hydrothermal activity.
Resumo:
Abstract: The history of grounded ice-sheet extent on the southern Weddell Sea shelf during the Last Glacial Maximum (LGM) and the timing of post-LGM ice-sheet retreat are poorly constrained. Several glaciological models reconstructed widespread grounding and major thickening of the Antarctic Ice Sheet in the Weddell Sea sector at the LGM. In contrast, recently published onshore data and modelling results concluded only very limited LGM-thickening of glaciers and ice streams feeding into the modern Filchner and Ronne ice shelves. These studies concluded that during the LGM ice shelves rather than grounded ice covered the Filchner and Ronne troughs, two deep palaeo-ice stream troughs eroded into the southern Weddell Sea shelf. Here we review previously published and unpublished marine geophysical and geological data from the southern Weddell Sea shelf. The stratigraphy and geometry of reflectors in acoustic sub-bottom profiles are similar to those from other West Antarctic palaeo-ice stream troughs, where grounded ice had advanced to the shelf break at the LGM. Numerous cores from the southern Weddell Sea shelf recovered sequences with properties typical for subglacially deposited tills or subglacially compacted sediments. These data sets give evidence that grounded ice had advanced across the shelf during the past, thereby grounding in even the deepest parts of the Filchner and Ronne troughs. Radiocarbon dates from glaciomarine sediments overlying the subglacial deposits are limited, but indicate that the ice grounding occurred at the LGM and that ice retreat started before ~15.1 corrected 14C kyrs before present (BP) on the outer shelf and before ~7.7 corrected 14C kyrs BP on the inner shelf, which is broadly synchronous with ice retreat in other Antarctic sectors. The apparent mismatch between the ice-sheet reconstructions from marine and terrestrial data can be attributed to ice streams with very low surface profiles (similar to those of "ice plains") that had advanced through Filchner Trough and Ronne Trough at the LGM. Considering the global sea-level lowstand of ~130 metres below present, a low surface slope of the expanded LGM-ice sheet in the southern Weddell Sea can reconcile grounding-line advance to the shelf break with limited thickening of glaciers and ice streams in the hinterland. This scenario implies that ice-sheet growth in the Weddell Sea sector during the LGM and ice-sheet drawdown throughout the last deglaciation could only have made minor contributions to the major global sea-level fluctuations during these times.
Resumo:
The oxygen isotopic composition (d18O) of calcium carbonate of planktonic calcifying organisms is a key tool for reconstructing both past seawater temperature and salinity. The calibration of paloeceanographic proxies relies in general on empirical relationships derived from field experiments on extant species. Laboratory experiments have more often than not revealed that variables other than the target parameter influence the proxy signal, which makes proxy calibration a challenging task. Understanding these secondary or "vital" effects is crucial for increasing proxy accuracy. We present data from laboratory experiments showing that oxygen isotope fractionation during calcification in the coccolithophore Calcidiscus leptoporus and the calcareous dinoflagellate Thoracosphaera heimii is dependent on carbonate chemistry of seawater in addition to its dependence on temperature. A similar result has previously been reported for planktonic foraminifera, supporting the idea that the [CO3]2- effect on d18O is universal for unicellular calcifying planktonic organisms. The slopes of the d18O/[CO3]2- relationships range between -0.0243 per mil/(µmol/kg) (calcareous dinoflagellate T. heimii) and the previously published -0.0022 per mil/(µmol/kg) (non-symbiotic planktonic foramifera Orbulina universa), while C. leptoporus has a slope of -0.0048 per mil/(µmol/kg). We present a simple conceptual model, based on the contribution of d18O-enriched [HCO3]- to the [CO3]2- pool in the calcifying vesicle, which can explain the [CO3]2- effect on d18O for the different unicellular calcifiers. This approach provides a new insight into biological fractionation in calcifying organisms. The large range in d18O/[CO3]2- slopes should possibly be explored as a means for paleoreconstruction of surface [CO3]2-, particularly through comparison of the response in ecologically similar planktonic organisms.
Resumo:
Seasonal changes in surface ocean temperature are increasingly recognized as an important parameter of the climate system. Here we assess the potential of analyzing single-specimen planktonic foraminifera as proxy for the seasonal temperature contrast (seasonality). Oxygen isotopes and Mg/Ca ratios were measured on single specimens of Globigerinoides ruber, extracted from surface sediment samples of the Mediterranean Sea and the adjacent Atlantic Ocean. Variability in d18O and Mg/Ca was then compared to established modern seasonal changes in temperature and salinity for both regions. The results show that (1) average d18O-derived temperatures correlate with modern annual average temperatures for most sites, (2) the range in d18O- and Mg/Ca-derived temperature estimates from single-specimen analysis resembles the range in seasonal temperature values at the sea surface (0-50 m) in the Mediterranean Sea and the Atlantic Ocean, and (3) there is no strong correlation between Mg/Ca- and d18O-derived temperatures from the same specimens in the current data set, indicating that other parameters (salinity, carbonate ion concentration, symbiont activity, ontogenesis, and natural variability) potentially affect these proxies.
Resumo:
The oxygen isotopes ratios of benthic foraminifera and detailed radiocarbon ages of the organic matter of an over 15 m long sediment core from the outer Niger delta allow us to date the oxygen isotope stage boundaries 1/2 to 11500 (+/- 650) years BP, 2/3 to approximately 23000 (+/- 2000) years BP. The composition of the predominantly terrigenous clays and accessory pelagic fossils reflects the evolution of the climate over the southwestern Sahel zone and the response of the Eastern Tropical Atlantic to these climatic fluctuations during the Late Quaternary. The dilution of the pelagic fossil concentrations by the terrigenous material and the oxygen isotopes ratios of planktonic foraminifera indicate large fluctuations in the freshwater discharge from the Niger, with high precipitations over the drainage area of this river from 4500 (+/- 300) to 11500 (+/- 650) years BP and from 11800 (+(- 600) to 13000 (+/- 600) years BP while the time intervals in between were as dry as today. Relative increase of kaolinite during wet phases and the association of smectite, chlorite and attapulgite during dry ones characterize the response of the weathering in the Niger drainage basins to the climatic fluctuations. The occurrence of 10-14 A mixed-layers prior to 26000 years BP is correlated with moderate alteration of the crystalline substratum outcrops from the middle-lower part of the Niger Basin. High quartz concentrations are particularly typical for the transition between oxygen isotope stages 1 and 2 at the inception of heavy precipitations in the southern Sahel zone. Sedimentation rates were quite constant, 30-35 cm/1000 years; they became unusually large at the beginning of the Holocene from 10900 (+/- 650) to 11500 (+/- 650) years BP where they reached more than 600 cm/1000 years. Bottom waters around 1100 m depth in the Gulf of Guinea responded to changes in paleo-oceanography of the entire Atlantic Ocean as well as to local influences. Abnormal carbon isotopes ratios and the drastic changes from a highly diversified fauna (during stages 2 and 3. and during the last part of stage 1 after approx. 7000 years BP) to a poorly diversified fauna in the intervenin time span point to the development of a local benthic environment which cannot easily be compared with the corresponding continental and slope environments of the entire Atlantic Ocean.
Resumo:
Analysis of the molecular composition of the organic matter (OM) from whole sediment samples can avoid analytical bias that might result from isolation of components from the sediment matrix, but has its own analytical challenges. We evaluated the use of GC * GC-ToFMS to analyze the pyrolysis products of six whole sediment samples obtained from above, within and below a 1 million year old OM-rich Mediterranean sapropel layer. We found differences in pyrolysis products
Resumo:
Thirty-six different geochemical and foraminiferal analyses were conducted on samples collected at closely spaced intervals across the Cretaceous/Tertiary (K/T) boundary exposed at Caravaca, Spain. A rapid reduction in the gradient between d13C values in fine fraction carbonate and benthic foraminiferal calcite and a decrease in the abundance of phosphorus (a proxy for organic carbon) and calcium were recorded in sediments 0-0.5 cm above the K/T boundary. These trends imply that an abrupt mass mortality occurred among pelagic organisms, leading to a significant reduction in the flux of organic carbon to the seafloor. In addition, variations in sulfur isotope ratios, the hydrocarbon-generating potential of kerogen (measured as the hydrogen index), and foraminiferal indices of dissolved oxygen level all imply that a rapid decrease in dissolved oxygen was coincident with the d13C event. Evidence of the low oxygen event has also been recognized in Japan and New Zealand, suggesting that intermediate water oxygen minima were widely developed during earliest Danian time. A threefold increase in the kaolinite/illite ratio and a 1.2 per mill decrease in d18O (carbonate fine fraction) were recorded in the basal 0.1-2 cm of Danian age sediments. These trends suggest that atmospheric warming and an increase in surface water temperature occurred 0-3 kyr after the d13C event. Recovery in the difference between d13C values in the carbonate fine fraction and in benthic foraminiferal calcite as well as increases in phosphorus and calcium contents occur at the base of planktonic foraminiferal Zone Pla, implying that an increase in primary productivity commenced some 13 kyr after the K/T boundary.
Resumo:
A series of K-Ar dates from Mt Giluwe volcano is reported and its relevance to the Quaternary history of the volcano is discussed. The period between about 380 000 and 220 000 years BP seems to have been one of major volcanic activity. During the volcanic activity there were periods of ice cover probably of short duration. The oldest evidence of glacial action predates a lava flow dated at between 340 000 and 380 000 years. At about 290 000 years an ice cap of a thickness of at least 100 m covered the summit area and one or a series of subglacial eruption(s) led to the formation of palagonitic breccia. This event was probably associated with a complete melting of the ice since it was followed almost immediately by the eruption of a thick sequence of normal lava flows which range in age from about 289 000 years to about 220 000 years. Subsequent volcanic activity was less significant and no dates are available on this.
Resumo:
The Plio-Pleistocene intensification of Northern Hemisphere continental ice-sheet development is known to have profoundly affected the global climate system. Evidence for early continental glaciation is preserved in sediments throughout the North Atlantic Ocean, where ice-rafted detritus (IRD) layers attest to the calving of sediment-loaded icebergs from circum-Atlantic ice sheets. So far, Early-Pleistocene IRD deposition has been attributed to the presence of high-latitudinal ice sheets, whereas the existence and extent of ice accumulation in more temperate, mid-latitudinal regions remains enigmatic. Here we present results from the multiproxy provenance analysis of a unique, Pleistocene-Holocene IRD sequence from the Irish NE Atlantic continental margin. There, the Challenger coral carbonate mound (IODP Expedition 307 site U1317) preserved an Early-Pleistocene record of 16 distinctive IRD events, deposited between ca 2.6 and 1.7 Ma. Strong and complex IRD signals are also identified during the mid-Pleistocene climate transition (ca 1.2 to 0.65 Ma) and throughout the Middle-Late Pleistocene interval. Radiogenic isotope source-fingerprinting, in combination with coarse lithic component analysis, indicates a dominant sediment source in the nearby British-Irish Isles, even for the oldest, Early-Pleistocene IRD deposits. Hence, our findings demonstrate, for the first time, repeated and substantial (i.e. marine-terminating) ice accumulation on the British-Irish Isles since the beginning of the Pleistocene. Contemporaneous expansion of both high- and mid-latitudinal ice sheets in the North Atlantic region is therefore implied at the onset of the Pleistocene. Moreover, it suggests the recurrent establishment of (climatically) favourable conditions for ice sheet inception, growth and instability in mid-latitudinal regions, even in the earliest stages of Northern Hemisphere glacial expansion and in an obliquity-driven climate system.
Resumo:
Organic geochemical studies on samples from Holes 487, 488, and 490 in the southern Mexico Middle America Trench provided an opportunity to characterize the organic fraction of the sedimentary section in an active trench environment and to project the petroleum-producing potential of the extracted lipid fractions. The samples were geologically young and of shallow burial history. Samples from Hole 487, located on the oceanic plate, range in age from late Miocene to middlelate Pleistocene. Samples from Hole 488, representing undifferentiated Quaternary sediment, were collected on the landward side of the lower trench slope. Miocene(?) to Quaternary sediments from Hole 490 were obtained from the upper slope immediately seaward of the inferred location of the continental crust.
Resumo:
143Nd/144Nd ratios have been determined on 37 samples of oceanic basalt, with a typical precision of +/- 2-3 * 10**-5 (2 sigma). Ocean island and dredged and cored submarine basalts are included for which reliable measurements of 87Sr/86Sr ratios exist in the literature or have been measured as part of this study. A strong negative correlation exists between 143Nd/144Nd and 87Sr/86Sr ratios in basalts from Iceland and the Reykjanes Ridge, but such a clear correlation does not exist for samples from the Hawaiian Islands. However, when other ocean island basalts from the Atlantic are included there is an overall correlation between these two parameters. Increases and decreases in Rb/Sr in oceanic basalt source regions have in general been accompanied by decreases and increases respectively in Sm/Nd ratios. The compatibility of the data with single-stage models is assessed and it is concluded that enrichment and depletion events, which are consistent with transfer of silicate melts, are responsible for the observed variation.