519 resultados para epsilon-Neodymium
Resumo:
Dolomite-rich layers of distinct pinkish colour are used as lithostratigraphic markers in the Amerasian Basin of the Arctic Ocean. However, origin of dolomite present in these sediment units has not been investigated in detail. In this study, lead (Pb) and neodymium (Nd) isotope composition of detrital clay-size fraction from different lithofacies was investigated in core PS72/340-5 recovered at the eastern flank of the Mendeleev Ridge. Prior to the geochemical analyses, grain-size distribution in sediments was analyzed in order to minimize the grain-size effect on the provenance signature. For provenance discrimination, results of isotope measurements were compared with marine surface sediment data and values for the circum-Arctic subaerial provinces. Late Quaternary sediment supply variability in core PS72/340-5 was analysed using the mixing model constrained by two tracers: 207Pb/206Pb and eNd. Variations of sediment isotopic composition are inferred to be due to mixing of volcanic and plutonic components. Usage of Pb isotopic ratios alone does not allow distinction between the volcanic and plutonic sources. Results confirm that, in the frame of the existing age model, over the last 200 ka dolomite-rich pink layers at the southern Mendeleev Ridge were deposited during events associated with intensified iceberg transport from North America. In general, however, late Quaternary sedimentation was mostly controlled by terrigenous input from the Chukchi and East Siberian Seas whereas sediment supply from the Laptev Sea area remained less important and relatively constant at the studied location.
Resumo:
Corvio sandstone is a ~20 m thick unit (Corvio Formation) that appears in the top section of the Frontada Formation (Campoó Group; Lower Cretaceous) located in Northern Spain in the southern margin of the Basque-Cantabrian Basin. Up to 228 plugs were cored from four 0.3 x 0.2 x 0.5 m blocks of Corvio sandstone, to perform a comprehensive characterization of the physical, mineralogical, geomechanical, geophysical and hydrodynamic properties of this geological formation, and the anisotropic assessment of the most relevant parameters. Here we present the first data set obtained on 53 plugs which covers (i) basic physical and chemical properties including density, porosity, specific surface area and elementary analysis (XRF - CHNS); (ii) the curves obtained during unconfined and confined strengths tests, the tensile strengths, the calculated static elastic moduli and the characteristic stress levels describing the brittle behaviour of the rock; (iii) P- and S-wave velocities (and dynamic elastic moduli) and their respective attenuation factors Qp and Qs, electrical resistivity for a wide range of confining stress; and (iv) permeability and transport tracer tests. Furthermore, the geophysical, permeability and transport tests were additionally performed along the three main orthogonal directions of the original blocks, in order to complete a preliminary anisotropic assessment of the Corvio sandstone.
Resumo:
The inorganic silicate fraction extracted from bulk pelagic sediments from the North Pacific Ocean is eolian dust. It monitors the composition of continental crust exposed to erosion in Asia. 176Lu/177Hf ratios of modern dust are subchondritic between 0.011 and 0.016 but slightly elevated with respect to immature sediments. Modern dust samples display a large range in Hf isotopic composition (IC), -4.70 < epsilon-Hf < +16.45, which encompasses that observed for the time series of DSDP cores 885/886 and piston core LL44-GPC3 extending back to the late Cretaceous. Hafnium and neodymium isotopic results are consistent with a dominantly binary mixture of dust contributed from island arc volcanic material and dust from central Asia. The Hf-Nd isotopic correlation for all modern dust samples, epsilon-Hf= =0.78 epsilon-Nd = +5.66 (n =22, R**2 =0.79), is flatter than those reported so far for terrestrial reservoirs. Moreover, the variability in epsilon-Hf of Asian dust exceeds that predicted on the basis of corresponding epsilon-Nd values (34.76 epsilon-Hf < +2.5; -10.96< epsilon-Nd <-10.1). This is attributed to: (1) the fixing of an important unradiogenic fraction of Hf in zircons, balanced by radiogenic Hf that is mobile in the erosional cycle, (2) the elevated Lu/Hf ratio in chemical sediments which, given time, results in a Hf signature that is radiogenic compared with Hf expected from its corresponding Nd isotopic components, and (3) the possibility that diagenetic resetting of marine sediments may incorporate a significant radiogenic Hf component into diagenetically grown minerals such as illite. Together, these processes may explain the variability and more radiogenic character of Hf isotopes when compared to the Nd isotopic signatures of Asian dust. The Hf-Nd isotope time series of eolian dust are consistent with the results of modern dust except two samples that have extremely radiogenic Hf for their Nd (epsilon-Hf =+8.6 and +10.3, epsilon-Nd =39.5 and 39.8). These data may point to a source contribution of dust unresolved by Nd and Pb isotopes. The Hf IC of eolian dust input to the oceans may be more variable and more radiogenic than previously anticipated. The Hf signature of Pacific seawater, however, has varied little over the past 20 Myr, especially across the drastic increase of eolian dust flux from Asia around 3.5 Ma. Therefore, continental contributions to seawater Hf appear to be riverine rather than eolian. Current predictions regarding the relative proportions of source components to seawater Hf must account for the presence of a variable and radiogenic continental component. Data on the IC and flux of river-dissolved Hf to the oceans are urgently required to better estimate contributions to seawater Hf. This then would permit the use of Hf isotopes as a monitor of past changes in erosion.
Resumo:
The oxygen isotopic composition (d18O) of calcium carbonate of planktonic calcifying organisms is a key tool for reconstructing both past seawater temperature and salinity. The calibration of paloeceanographic proxies relies in general on empirical relationships derived from field experiments on extant species. Laboratory experiments have more often than not revealed that variables other than the target parameter influence the proxy signal, which makes proxy calibration a challenging task. Understanding these secondary or "vital" effects is crucial for increasing proxy accuracy. We present data from laboratory experiments showing that oxygen isotope fractionation during calcification in the coccolithophore Calcidiscus leptoporus and the calcareous dinoflagellate Thoracosphaera heimii is dependent on carbonate chemistry of seawater in addition to its dependence on temperature. A similar result has previously been reported for planktonic foraminifera, supporting the idea that the [CO3]2- effect on d18O is universal for unicellular calcifying planktonic organisms. The slopes of the d18O/[CO3]2- relationships range between -0.0243 per mil/(µmol/kg) (calcareous dinoflagellate T. heimii) and the previously published -0.0022 per mil/(µmol/kg) (non-symbiotic planktonic foramifera Orbulina universa), while C. leptoporus has a slope of -0.0048 per mil/(µmol/kg). We present a simple conceptual model, based on the contribution of d18O-enriched [HCO3]- to the [CO3]2- pool in the calcifying vesicle, which can explain the [CO3]2- effect on d18O for the different unicellular calcifiers. This approach provides a new insight into biological fractionation in calcifying organisms. The large range in d18O/[CO3]2- slopes should possibly be explored as a means for paleoreconstruction of surface [CO3]2-, particularly through comparison of the response in ecologically similar planktonic organisms.
Resumo:
An up to 2-cm thick Chicxulub ejecta deposit marking the Cretaceous-Paleogene (K-Pg) boundary (the "K-T" boundary) was recovered in six holes drilled during ODP Leg 207 (Demerara Rise, tropical western Atlantic). Stunning features of this deposit are its uniformity over an area of 30 km2 and the total absence of bioturbation, allowing documentation of the original sedimentary sequence. High-resolution mineralogical, petrological, elemental, isotopic (Sr-Nd), and rock magnetic data reveal a distinct microstratigraphy and a range of ejecta components. The deposit is normally graded and composed predominantly of rounded, 0.1- to max. 1-mm sized spherules. Spherules are altered to dioctahedral aluminous smectite, though occasionally relict Si-Al-rich hydrated glass is also present, suggesting acidic precursor lithologies. Spherule textures vary from hollow to vesicle-rich to massive; some show in situ collapse, others include distinct Fe-Mg-Ca-Ti-rich melt globules and lath-shaped Al-rich quench crystals. Both altered glass spherules and the clay matrix (Site 1259B) display strongly negative epsilon-Nd (T=65Ma) values (-17) indicating uptake of Nd from contemporaneous ocean water during alteration. Finally, Fe-Mg-rich spherules, shocked quartz and feldspar grains, few lithic clasts, as well as abundant accretionary and porous carbonate clasts are concentrated in the uppermost 0.5-0.7 mm of the deposit. The carbonate clasts display in part very unusual textures, which are interpreted to be of shock-metamorphic origin. The preservation of delicate spherule textures, normal grading with lack of evidence for traction transport, and sub-millimeter scale compositional trends provide evidence for this spherule deposit representing a primary air-fall deposit not affected by significant reworking. The ODP Leg 207 spherule deposit is the first known dual-layer K-Pg boundary in marine settings; it incorporates compositional and stratigraphic aspects of both proximal and distal marine sites. Its stratigraphy strongly resembles the dual-layer K-Pg boundary deposits in the terrestrial Western Interior of North America (although there carbonate phases are not preserved). The occurrence of a dual ejecta layer in these quite different sedimentary environments - separated by several thousands of kilometers - provides additional evidence for an original sedimentary sequence. Therefore, the layered nature of the deposit may document compositional differences between ballistic Chicxulub ejecta forming the majority of the spherule deposit, and material falling out from the vapor (ejecta) plume, which is concentrated in the uppermost part.