694 resultados para INDIAN OCEAN VARIABILITY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glacial-interglacial fluctuations in the vegetation of South Africa might elucidate the climate system at the edge of the tropics between the Indian and Atlantic Oceans. However, vegetation records covering a full glacial cycle have only been published from the eastern South Atlantic. We present a pollen record of the marine core MD96-2048 retrieved by the Marion Dufresne from the Indian Ocean ~120 km south of the Limpopo River mouth. The sedimentation at the site is slow and continuous. The upper 6 m (spanning the past 342 Ka) have been analysed for pollen and spores at millennial resolution. The terrestrial pollen assemblages indicate that during interglacials, the vegetation of eastern South Africa and southern Mozambique largely consisted of evergreen and deciduous forests. During glacials open mountainous scrubland dominated. Montane forest with Podocarpus extended during humid periods was favoured by strong local insolation. Correlation with the sea surface temperature record of the same core indicates that the extension of mountainous scrubland primarily depends on sea surface temperatures of the Agulhas Current. Our record corroborates terrestrial evidence of the extension of open mountainous scrubland (including fynbos-like species of the high-altitude Grassland biome) for the last glacial as well as for other glacial periods of the past 300 Ka.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geo-referenced catch and fishing effort data of the bigeye tuna fisheries in the Indian Ocean over 1952-2014 were analysed and standardized to facilitate population dynamics modelling studies. During this sixty-two years historical period of exploitation, many changes occurred both in the fishing techniques and the monitoring of activity. This study includes a series of processing steps used for standardization of spatial resolution, conversion and standardization of catch and effort units, raising of geo-referenced catch into nominal catch level, screening and correction of outliers, and detection of major catchability changes over long time series of fishing data, i.e., the Japanese longline fleet operating in the tropical Indian Ocean. A total of thirty fisheries were finally determined from longline, purse seine and other-gears data sets, from which 10 longline and four purse seine fisheries represented 96% of the whole historical catch. The geo-referenced records consists of catch, fishing effort and associated length frequency samples of all fisheries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was made of mineral composition of sand- and silt-sized fractions of recent clastic (riftogenic) sediments and solidified deposits collected from the bottom of the Romanche Trench during the first voyage of R/V Akademik Kurchatov. Similarity between mineral compositions of sediments and bedrocks (ultrabasites, gabbroids, diabases) was established. This similarity is a basis for considering the mineral complex of the deposits that have been derived from the bedrocks of the trench slopes, and have formed due to their submarine denudation accompanied by tectonic crushing. The same mineral composition was found in pieces of older consolidated deposits; this suggests that conditions of sedimentation similar to those at recent times have existed for a long time in the Romanche Trench.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multivariate analysis was performed on percentages of 46 species of unstained deep-sea benthic foraminifera from 131 core-top to near-core-top samples (322-5013 m) from across the Indian Ocean. Faunal data are combined with GEOSECS geochemical data to investigate any relationship between benthic foraminifera (assemblages and species) and deep-sea properties. In general, benthic foraminifera show a good correlation to surface productivity, organic carbon flux to the sea floor, deep-sea oxygenation and, to a lesser extent, to bottom temperature, without correlation with the water depths. The foraminiferal census data combined with geochemical data has enabled the division of the Indian Ocean into two faunal provinces. Province A occupies the northwestern Indian Ocean (Arabian Sea region) where surface primary production has a major maximum during the summer monsoon season and a secondary maximum during winter monsoon season that leads to high organic flux to the seafloor, making the deep-sea one of the most oxygen-deficient regions in the world ocean, with a pronounced oxygen minimum zone (OMZ). This province is dominated by benthic foraminifera characteristic of low oxygen and high organic food flux including Uvigerina peregrina, Robulus nicobarensis, Bolivinita pseudopunctata, Bolivinita sp., Bulimina aculeata, Bulimina alazanensis, Ehrenbergina carinata and Cassidulina carinata. Province B covers southern, southeastern and eastern parts of the Indian Ocean and is dominated by Nuttallides umbonifera, Epistominella exigua, Globocassidulina subglobosa, Uvigerina proboscidea, Cibicides wuellerstorfi, Cassidulina laevigata, Pullenia bulloides, Pullenia osloensis, Pyrgo murrhina, Oridorsalis umbonatus, Gyroidinoides (= Gyroidina) soldanii and Gyroidinoides cf. gemma suggesting well-oxygenated, cold deep water with low (oligotrophic) and pulsed food supply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study of Recent abyssal benthic foraminifera from core-top samples in the eastern equatorial Indian Ocean has identified distinctive faunas whose distribution patterns reflect the major hydrographic features of the region. Above 3800 m, Indian Deep Water (IDW) is characterized by a diverse and evenly-distributed biofacies to which Globocassidulina subglobosa, Pyrgo spp., Uvigerina peregrina, and Eggerella bradyi are the major contributors. Nuttalides umbonifera and Epistominella exigua are associated with Indian Bottom Water (IBW) below 3800 m. Within the IBW fauna, N. umbonifera and E. exigua are characteristic of two biofacies with independent distribution patterns. Nuttalides umbonifera systematically increases in abundance with increasing water depth. The E. exigua biofacies reaches its greatest abundance in sediments on the eastern flank of the Ninetyeast Ridge and in the Wharton-Cocos Basin. The hydrographic transition between IDW and IBW coincides with the level of transition from waters supersaturated to waters undersaturated with respect to calcite and with the depth of the lysocline. Carbonate saturation levels, possibly combined with the effects of selective dissolution on the benthic foraminiferal populations, best explain the change in faunas across the IDW/IBW boundary and the bathymetric distribution pattern of N. umbonifera. The distribution of the E. exigua fauna cannot be explained with this model. Epistominella exigua is associated with the colder, more oxygenated IBW of the Wharton-Cocos Basin. The distribution of this biofacies on the eastern flank of the Ninetyeast Ridge agrees well with the calculated bathymetric position of the northward flowing deep boundary current which aerates the eastern basins of the Indian Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data given in this and previous communications is insufficient to assess the quantitative role of these supplementary sources in the Indian Ocean, but they do not rule out their local significance. Elucidation of this problem requires further data on the characteristics of the composition and structure of nodules in various different metallogenic regions of the ocean floor. A study of the distribution of ore elements in nodules both depthwise and over the area of the floor together with compilation of the first schematic maps based on the results of analyses of samples from 54 stations) enables us to give a more precise empirical relation between the Mn, Fe, Ni, Cu, and Co contents in Indian Ocean nodules, the manganese ratio and the values of the oxidation potential, which vary regularly with depth. This in turn also enables us to confirm that formation of nodules completes the prolonged process of deposition of ore components from ocean waters, and the complex physico-chemical transformations of sediments in the bottom layer. Microprobe investigation of ore rinds revealed the nonuniform distribution of a num¬ber of elements within them, owing to the capacity of particles of hydrated oxides of manganese and iron to adsorb various elements. High concentration of individual elements is correlated with local sectors of the ore rinds, in which the presence of todorokite, in particular, has been noted. The appearance of this mineral apparently requires elevated Ca, Mg, Na, and K concentrations, because the stable crystalline phase of this specific mineral form of the psilomelane group may be formed when these cations are incorporated into a lattice of the delta-MnO2 type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solid phases from surface sediments, atmospheric dusts, and rivers of the Indian Ocean environment have been analyzed for their clay minerals and quartz. Such data have been used to delimit the transport paths and sources of the detrital minerals in the oceanic deposits. Diagnostic in distinguishing fluvial and eolian inputs to the northern Indian Ocean is a combination of the clay mineral assemblages and of their geographic distributions. River borne solids are the primary components of the Bay of Bengal deposits. The eastern part receives its continental input through the Ganges-Brahmaputra river system, while drainage of the Indian Peninsula by rivers introduces solids to the western part. The former materials are characterized by high illite and chlorite in the clay mineral assemblages; the latter by montmorillonite. The winds over the Bay bear distinctive dust burdens based upon their directions. However, their contributions to the sediments are insignificant. The eastern sector of the Arabian Sea receives major contributions of continental debris from the rivers and the high montmorillonite levels clearly indicate a source in the Indian Peninsula. The rest of the Sea appears to receive most of its land-derived materials from the north, perhaps the desert regions of northern India and West Pakistan, and they are wind-borne. These materials are also transported to the equatorial regions of the Indian Ocean. A gradient in attapulgite, just north of the equator, may indicate an eolian contribution to the Arabian Sea from the African continent. The halogenated hydrocarbon pesticides were assayed in the southwest monsoon winds and enter the Bay of Bengal at levels of a half ton per month, an amount comparable to those introduced by other wind and river systems to the marine environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A satellite-only Mean Dynamic Topography (MDT) of the North Indian Ocean is estimated from the DIRR5 geoid and CNES_CLS11 mean sea surface (Schaffer et al. 2012). DIRR5 geoid is estimated from the latest release (Release 5) of GOCE gravity data according to previous studies (e.g., Johannessen et al. 2003; Raj, 2014). Note that this MDT estimated is referenced to a time period of 7 years (1993-1999). A correction data obtained from AVISO is later used to convert the MDT to a time reference of 20 years (1993-2012). More details are given in Raj (2016).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of deep-sea benthonic foraminifera in core top samples from the southwest Indian Ocean is examined. Principal component analysis reveals two major assemblages. One assemblages between 3600 and 4800-m water depth is dominated by Episominella umbonifera and is associated with cold (Theta = -0.3 to 0.8°C), low salinity (34.66 to 34.72 * 10**-3) Antarctic Bottom Water in the Crozet Basin, in fracture zones, and on the flanks of the Southwest Indian Ridge. A second assemblage, dominated by Planulina wuellerstorfi, Globocassidulina subglobasa, Astrononion echolsi and Pullenia bulloides, is between 1600 and 3800 m on the Crozet Plateau, Madagascar Ridge, Central Indian Ridge, and Southwest Indian Ridge and is associated with relatively warm (Theta = 0.8 to 2.6°C), high salinity (34.72 to 34.76 * 10**-3) North Atlantic Deep Water. The third principal component divides the P. wuellerstorfi assemblage into two subgroups. One is dominated by Epistominella exigua, P. bulloides, P. wuellerstorfi, and A. echolsi and a second is dominated by G. subglobosa. The distribution of the E. umbonifera assemblage and previous hydrographic studies suggest that AABW flows as a western boundary contour current in the Crozet Basin and penetrates fracture zones in the Southwest Indian Ridge between 55 and 57°E and near 66°E as it travels northward into the Madagascar and Mascarene basins. The faunal-water mass associations from the southeast Indian Ocean are compared; the most notable faunal difference is the absence of Uvigerina as a dominant taxon in the southwest Indian Ocean. A comparison of dissolved oxygen and Uvigerina data shows that oxygen is not a major influence upon the distribution of Uvigerina. A correlation analysis of the faunal data and water depth, potential temperature, in situ temperature, salinity, dissolved oxygen, and 1 - Omega, an index of calcium carbonate undersaturation, was carried out to determine the relationships between fauna and hydrography. The second principal component has a significant positive correlation at the 99.9% level with temperature and negative correlations with water depth and 1 - Omega. A general faunal-water mass correlation exists, but it is not possible to determine which variable controls the faunal distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contents and distributions of Cu, Ni, Co, V, Cr, Zn, Pb, Mo, W, and Zr in near-coast and pelagic sediments of the Northern Indian Ocean are under consideration in the paper. Chemical analyses showed enrichment of pelagic clayey radiolarian oozes by Mn, Cu, Ni, Co, Pb, W, and Mo. According to enrichment factors these elements have the following order: Mo> Mn> Cu> Ni> Co> Pb> W. Enrichment of pelagic sediments from the Indian Ocean is mainly determined by the mechanism of the sedimentation process. Enrichment factors of Cu, Ni, Co, W, Mo, and Mn in pelagic sediments of the North Indian Ocean are intermediate between ones in pelagic sediments of the Pacific and Atlantic Oceans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical and mineralogical analyses of manganese nodules from a large number of widely spaced localities in the Pacific and Indian Oceans have shown that their mineralogy and chemical composition varies both areally and with depth of formation. This is considered to result from a number of factors, important among which are: (a) their proximity to continental or volcanic sources of elements; (b) the chemical environment of deposition, including the degree of oxygenation; and (c) local factors such as the upward migration of reduced manganese in sediments from certain areas. Sub-surface nodules appear to share the chemical characteristics of their surface counterparts, especially those from volcanic areas where sub-surface sources of elements are probably important.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bituminous substances in metalliferous sediments from the region of the triple junction in the Indian Ocean were studied. Specific peculiarities of their structure confirming location in "hot conditions" were revealed. Hydrocarbons are genetically connected with hydrothermal matter, and thus they could be considered as a geochemical indicator of hydrothermal processes in the ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been found that oxygen-isotope and paleotemperature curves based on types of planktonic foraminiferal thanatocenoses in three sediment cores, from the tropical, southern temperate, and southern glacial zones of the Indian Ocean can be readily correlated with each other. The sediment cores revealed three epochs of cold climate during the past 700 ky; these are probably connect with worldwide epochs of cooling during Pleistocene that led to advance of ice sheets during continental glaciations in the northern hemisphere.