670 resultados para Calculated from electrical resistivity measurements
Resumo:
A limiting factor in the accuracy and precision of U/Pb zircon dates is accurate correction for initial disequilibrium in the 238U and 235U decay chains. The longest-lived-and therefore most abundant-intermediate daughter product in the 235U isotopic decay chain is 231Pa (T1/2 = 32.71 ka), and the partitioning behavior of Pa in zircon is not well constrained. Here we report high-precision thermal ionization mass spectrometry (TIMS) U-Pb zircon data from two samples from Ocean Drilling Program (ODP) Hole 735B, which show evidence for incorporation of excess 231Pa during zircon crystallization. The most precise analyses from the two samples have consistent Th-corrected 206Pb/238U dates with weighted means of 11.9325 ± 0.0039 Ma (n = 9) and 11.920 ± 0.011 Ma (n = 4), but distinctly older 207Pb/235U dates that vary from 12.330 ± 0.048 Ma to 12.140 ± 0.044 Ma and 12.03 ± 0.24 to 12.40 ± 0.27 Ma, respectively. If the excess 207Pb is due to variable initial excess 231Pa, calculated initial (231Pa)/(235U) activity ratios for the two samples range from 5.6 ± 1.0 to 9.6 ± 1.1 and 3.5 ± 5.2 to 11.4 ± 5.8. The data from the more precisely dated sample yields estimated DPazircon/DUzircon from 2.2-3.8 and 5.6-9.6, assuming (231Pa)/(235U) of the melt equal to the global average of recently erupted mid-ocean ridge basaltic glasses or secular equilibrium, respectively. High precision ID-TIMS analyses from nine additional samples from Hole 735B and nearby Hole 1105A suggest similar partitioning. The lower range of DPazircon/DUzircon is consistent with ion microprobe measurements of 231Pa in zircons from Holocene and Pleistocene rhyolitic eruptions (Schmitt (2007; doi:10.2138/am.2007.2449) and Schmitt (2011; doi:10.1146/annurev-earth-040610-133330)). The data suggest that 231Pa is preferentially incorporated during zircon crystallization over a range of magmatic compositions, and excess initial 231Pa may be more common in zircons than acknowledged. The degree of initial disequilibrium in the 235U decay chain suggested by the data from this study, and other recent high precision datasets, leads to resolvable discordance in high precision dates of Cenozoic to Mesozoic zircons. Minor discordance in zircons of this age may therefore reflect initial excess 231Pa and does not require either inheritance or Pb loss.
Resumo:
In locations of rapid sediment accumulation receiving substantial amounts of laterally transported material the timescales of transport and accurate quantification of the transported material are at the focus of intense research. Here we present radiocarbon data obtained on co-occurring planktic foraminifera, marine haptophyte biomarkers (alkenones) and total organic carbon (TOC) coupled with excess Thorium-230 (230Thxs) measurements on four sediment cores retrieved in 1649-2879 m water depth from two such high accumulation drift deposits in the Northeast Atlantic, Björn and Gardar Drifts. While 230Thxs inventories imply strong sediment focussing, no age offsets are observed between planktic foraminifera and alkenones, suggesting that redistribution of sediments is rapid and occurs soon after formation of marine organic matter, or that transported material contains negligible amounts of alkenones. An isotopic mass balance calculation based on radiocarbon concentrations of co-occurring sediment components leads us to estimate that transported sediment components contain up to 12% of fossil organic matter that is free of or very poor in alkenones, but nevertheless appears to consist of a mixture of fresh and eroded fossil material. Considering all available constraints to characterize transported material, our results show that although focussing factors calculated from bulk sediment 230Thxs inventories may allow useful approximations of bulk redeposition, they do not provide a unique estimate of the amount of each laterally transported sediment component. Furthermore, our findings provide evidence that the occurrence of lateral sediment redistribution alone does not always hinder the use of multiple proxies but that individual sediment fractions are affected to variable extents by sediment focussing.
Resumo:
Stable isotope measurements on the planktonic foraminifer Globigerinoides ruber (white) have been carried out on a number of selected deep-seas sediment cores from the South Lau and Norlh Fiji Basins. The d18O-curves show good correlation with the inter-ocean oraphic correlation composite d18O-record of the standard reference section (Prell et al. 1986), which, in combination with the chronostratigraphic classifications of Herterich & Sarnthein (1984, modified) and Imbrie et al. 1984), allows a detailed dating of the sedimentary sequences. The deepest layers in core no. 119 (southern Lau Basin) could be assigned to Isotope Stage 24. Measurements made on bulk carbonate in two cores show a much higher glacial-interglacial amplitude, allowing the general identification of the conventional oxygen isotope stages. The d13C-values of the benthic foraminifer Cibicidoides wuellerstorfi show progressively lighter values northwards reflecting an increasing contribution of the isotopically lighter CO2 from the remineralisation of organic matter during the general northward movement of the deep water masses. Cyclicities in the sedimentation rates were observed in core nos. 117 and 119 (both southern Lau Basin) where the interglacials exhibit higher levels than the glacials. Calculated new or export paleoproductivity show that the glacials had higher productivity in the euphotic zone. From the oxygen isotope stratigraphy, the five ash layers in core nos. 117 and 119 could be dated as about 530 ka B.P. in Stage 14, 695 ka B.P. in Stage 18, 775 ka B.P. in Stage 21, 790 ka B.P. and 825 ka B.P. in Stage 22. Carbonate dissolution occurred during stages 5, 8 and 10 to 12.
Resumo:
A detailed study of physical properties was made on core samples from Deep Sea Drilling Project Hole 504B. The measured properties are density, porosity, sonic velocity, electrical resistivity, and fluid permeability. Basalts from this young oceanic crust have higher density and sonic velocity than the average DSDP basalts. Porosity (and temperature) dependences of physical properties are given by V = Vo - a-phi; roo = roo-0 exp(E*/RT)phi**-q; k = k0' phi**2q-1; where V is the sonic velocity (km/s), Vo = 6.45 (km/s), a = 0.111 (km/s %), phi is the porosity (%), roo is the electrical resistivity (ohm m), roo-0 = 0.002 (ohm m), E* = 2.7 (Kcal/mol) for fresh basalts, RT has its usual meaning, q = 1.67 ± 0.27, k is the permeability, k0' = (1 to about 10) x 10**-12 (cm**2). Porosity distribution in the crust in this area is estimated by combining the seismic velocity distribution and velocity-porosity relation. Because of the rapid decrease in porosity with depth, resistivity increases and permeability decreases rapidly with depth. The decreasing rate of permeability with increasing depth is approximately given by k(cm**2) = 2 x 10**-10 exp(-z (km)/0.3).
Resumo:
Empirical relationships between physical properties determined non-destructively by core logging devices and calibrated by carbonate and opal measurements determined on discrete samples allow extraction of carbonate and opal records from the non-destructive measurements in biogenic settings. Contents of detrital material can be calculated as a residual. For carbonate and opal the correlation coefficients (r) are 0.954 and ?0.916 for sediment density, ?0.816 and 0.845 for compressional-wave velocity, 0.908 and ?0.942 for acoustic impedance, and 0.886 and ?0.865 for sediment color (lightness). Carbonate contents increase in concert with increasing density and acoustic impedance, decreasing velocity and lighter sediment color. The opposite is true for opal. The advantages of deriving the sediment composition quantitatively from core logging are: (i) sampling resolution is increased significantly, (ii) non-destructive data can be gathered rapidly, and (iii) laboratory work on discrete samples can be reduced. Applied to paleoceanographic problems, this method offers the opportunity of precise stratigraphic correlations and of studying processes related to biogenic sedimentation in more detail. Density is most promising because it is most strongly affected by changes in composition.
Resumo:
As a result of intensive field activities carried out by several nations over the past 15 years, a set of accumulation measurements for western Dronning Maud Land, Antarctica, was collected, based on firn-core drilling and snow-pit sampling. This new information was supplemented by earlier data taken from the literature, resulting in 111 accumulation values. Using Geographical Information Systems software, a first region-wide mean annual snow-accumulation field was derived. In order to define suitable interpolation criteria, the accumulation records were analyzed with respect to their spatial autocorrelation and statistical properties. The resulting accumulation pattern resembles well known characteristics such as a relatively wet coastal area with a sharp transition to the dry interior, but also reveals complex topographic effects. Furthermore, this work identifies new high-return shallow drilling sites by uncovering areas of insufficient sampling density.
Resumo:
The European Project for Ice Coring in Antarctica (EPICA) includes a comprehensive pre-site survey on the inland ice plateau of Dronning Maud Land. This paper focuses on the investigation of the 18O content of shallow firn and ice cores. These cores were dated by profiles derived from dielectric-profiling and continuous flow analysis measurements. The individual records were stacked in order to obtain composite chronologies of 18O contents and accumulation rates with enhanced signal-to-noise variance ratios.These chronologies document variations in the last 200 and 1000 years.The 18O contents and accumulation rates decreased in the 19th century and increased during the 20th century.Using the empirical relationships between stable isotopes, accumulation rates and the 10m firn temperature, the variation of both parameters can be explained by the same temperature history.But other causes for these variations, such as the build-up of the snow cover, cannot be excluded. A marked feature of the 1000 year chronology occurs during the period AD 1180-1530 when the 18O contents remains below the long-term mean. Cross-correlation analyses between five cores from the Weddell Sea region and Dronning Maud Land show that 18O records can in some periods be positively correlated and in others negatively correlated, indicating a complex climatic history in time and space.
Resumo:
This dataset present result from the DFG- funded Arctic-Turbulence-Experiment (ARCTEX-2006) performed by the University of Bayreuth on the island of Svalbard, Norway, during the winter/spring transition 2006. From May 5 to May 19, 2006 turbulent flux and meteorological measurements were performed on the monitoring field near Ny-Ålesund, at 78°55'24'' N, 11°55'15'' E Kongsfjord, Svalbard (Spitsbergen), Norway. The ARCTEX-2006 campaign site was located about 200 m southeast of the settlement on flat snow covered tundra, 11 m to 14 m above sea level. The permanent sites used for this study consisted of the 10 m meteorological tower of the Alfred Wegener Institute for Polar- and Marine Research (AWI), the international standardized radiation measurement site of the Baseline Surface Radiation Network (BSRN), the radiosonde launch site and the AWI tethered balloon launch sites. The temporary sites - set up by the University of Bayreuth - were a 6 m meteorological gradient tower, an eddy-flux measurement complex (EF), and a laser-scintillometer section (SLS). A quality assessment and data correction was applied to detect and eliminate specific measurement errors common at a high arctic landscape. In addition, the quality checked sensible heat flux measurements are compared with bulk aerodynamic formulas that are widely used in atmosphere-ocean/land-ice models for polar regions as described in Ebert and Curry (1993, doi:10.1029/93JC00656) and Launiainen and Cheng (1995). These parameterization approaches easily allow estimation of the turbulent surface fluxes from routine meteorological measurements. The data show: - the role of the intermittency of the turbulent atmospheric fluctuation of momentum and scalars, - the existence of a disturbed vertical temperature profile (sharp inversion layer) close to the surface, - the relevance of possible free convection events for the snow or ice melt in the Arctic spring at Svalbard, and - the relevance of meso-scale atmospheric circulation pattern and air-mass advection for the near-surface turbulent heat exchange in the Arctic spring at Svalbard. Recommendations and improvements regarding the interpretation of eddy-flux and laser-scintillometer data as well as the arrangement of the instrumentation under polar distinct exchange conditions and (extreme) weather situations could be derived.
Resumo:
We investigated surficial sediments for physico-chemical composition from numerous sites of seven study areas in the manganese nodule field of the northern Peru Basin as part of a deep-sea environmental study. Major results from this study are strong variability with respect to water depth, productivity in surface waters, locality, bottom water flow, and seafloor topography. Sediment sites are located mostly in 3900 to 4300 m water depth between the lysocline and the carbonate compensation depth (CCD). Large fluctuations in carbonate content (0% to 80%) determine sediment density and compressional-wave velocity, and, by dilution, contents of opal and non-biogenic material. Mass accumulation rates of biogenic components as well as geochemical proxies (barium and phosphorus) distinguish areas of higher productivity in the northwest near equatorial upwelling and in the northeast close to coastal upwelling, from areas of lower productivity in the west and south. Comparisons between the central Peru Basin area (Discol) and western Peru Basin area (Sediperu) reveals, for the Sediperu area, a shallower CCD, more carbonate but less opal, organic carbon, and non-biogenic material in sediments at the same water depth as well as larger down-core fluctuations of organic carbon and MnO2. Bottom water flow in the abyssal hill topography causes winnowing of material from summits of seamounts and ridges, where organic carbon preservation is poor, to basins where organic carbon preservation is better. Down-core measurements in box cores indicate a three-fold division in the upper 50 cm of the sediment column. An uppermost semi-liquid top layer is dark brown, 5-15 cm thick and contains most of the ferro-manganese nodules. A 5-15 cm thick transition zone of light sediment color has increasing shear strength, lowest opal contents and compressional-wave velocities, but highest carbonate contents and sediment densities. The lowermost layer contains stiffer light gray sediments.
Resumo:
Mass estimates for Late Miocene and Pliocene (8.6-3.25 Ma) Discoaster species and Sphenolithus are determined using samples of the equatorial Atlantic (Ceara Rise: ODP Site 927). Based on morphometric measurements, 3D computer models were created for 11 Discoaster species and their volumes calculated. From these, shape factors (ks) were derived to allow calculation of mass for different-sized discoasters and Sphenolithus abies. The mass estimates were then used to calculate the contribution of nannofossils to the total nannofossil carbonate. The discoaster contribution ranges from 10% to 40%, with a decreasing trend through the investigated interval. However, our estimates of total nannofossil carbonate from size-corrected abundance data are consistently 30-50% lower than estimates from grain-size measurement; this suggests that data based on mass estimates need to be interpreted with caution.
Resumo:
Mass transport and mass flux values for the different types of glaciers in the Sør-Rondane are calculated from computer models, based upon gravity data and geodetic stake velocity measurements. The results are interpreted in the light of a general flow line analysis, glacial geological investigations and of the ablation terms of the mass balance for Dronning Maud Land and Antarctica.
Resumo:
The data collection "Deep Drilling of Glaciers: Soviet-Russian projects in Arctic, 1975-1995" was collected by the following basic considerations: - compilation of deep (>100 m) drilling projects on Arctic glaciers, using data of (a) publications; (b) archives of IGRAN; (c) personal communication of project participants; - documentation of parameters, references. Accuracy of data and techniques applied to determine different parameters are not evaluated. The accuracy of some geochemical parameters (up to 1984 and heavy metalls) is uncertain. Most reconstructions of ice core age and of annual layer thickness are discussed; - digitizing of published diagrams (in case, when original numerical data were lost) and subsequent data conversion to equal range series and adjustment to the common units. Therefore, the equal-range series were calculated from original data or converted from digitized chart values as indicated in the metadata. For the methodological purpose, the equal-range series obtained from original and reconstructed data were compared repeatedly; the systematic difference was less then 5-7%. Special attention should be given to the fact, that the data for individual ice core parameters varies, because some parameters were originally measured or registered. Parameters were converted in equal-range series using 2 m steps; - two or more parameter values were determined, then the mean-weighted (i.e. accounting the sample length) value is assigned to the entire interval; - one parameter value was determined, measured or registered independently from the parameter values in depth intervals which over- and underlie it, then the value is assigned to the entire interval; - one parameter value was determined, measured or registered for two adjoining depth intervals, then the specific value is assigned to the depth interval, which represents >75% of sample length ; if each of adjoining depth intervals represents <75% of sample length, then the correspondent parameter value is assigned to both intervals of depth. This collection of ice core data (version 2000) was made available through the EU funded QUEEN project by S.M. Arkhipov, Moscow.