628 resultados para Accumulation area ratio
Resumo:
Uranium series nuclide concentrations have been measured on sediments from five box cores from an equatorial Pacific transect. 230Thexcess activities show discontinuities at the Holocene-glacial boundary as dated by 14C. The glacial sedimentation rates determined by 230Th and 14C are 2.5-3.0 cm/kyr. The Holocene rates from 230Th are much lower than those dated by 14C (1.9-2.3 cm/kyr) because of carbonate dissolution. 230Th sedimentation fluxes exceed water column supply by factors of 1.2-1.8 in the Holocene and 1.8-3.0 in the glacial sections. A number of models have been applied to calculate carbonate dissolution rates. The results show that carbonate dissolution rates in the Holocene (in g/cm**2 kyr) equal 1.5 * 10**-3 exp (1.4D) where D is water depth in kilometers. A point-by- point estimation of sediment fluxes through time show that clay accumulation rates in the area have been near constant at 0.1-0.2 g/cm**2 kyr over the past 20 kyr whereas carbonate accumulation rates have decreased dramatically from 0.6-1.0 g/cm**2 kyr in the glacial sections of the cores to 0.2-0.6 g/cm**2 kyr in the Holocene. The errors caused by the uncertainties in the age of the termination of the last glacial period have been investigated and results show that a range of 11-14 kyr leads to an error upper limit of about 30% in the estimation of CaCO3 dissolution rates. The response time of CaCO3 and 230Thex concentrations in the mixed layer of sediments due to an impulse of change in CaCO3 dissolution rate has also been discussed, showing that the observed changes in carbonate dissolution may be explained in terms of a single or a continuous change, depending upon the thickness of the mixed layer.
Resumo:
Organic geochemical records of the last 940 kyr are presented for equatorial Atlantic Ocean Drilling Program (ODP) sites 663 and 664 and discussed with regard to the development of ocean productivity and African paleoclimate. Proportions of marine and terrigenous organic matter (OM) are estimated from elemental, pyrolytic, isotopic, and petrologic data. Spectral analyses reveal a strong power at the eccentricity and obliquity band, indicating a close response of tropical organic sedimentation to the climatic evolution at high latitudes. The orbital covariance of organic carbon with biogenous opal and terrigenous records favor that glacially enhanced dust supply and surface water mixing were primary controls for deposition of organic carbon. Wind-borne supply of terrigenous OM contributes 26 to 55% and 0 to 39% to the bulk OM based on microscopic and isotopic records, respectively. Admixture of C4 plant matter was approximated to contribute up to 16% to the bulk organic fraction during peak glacial conditions.
Resumo:
We examined the flux of Al to sediment accumulating beneath the zone of elevated productivity in the central equatorial Pacific Ocean, along a surface sediment transect at 135°W as well as downcore for a 650 kyr record at 1.3°N, 133.6°W. Across the surface transect, a pronounced, broadly equatorially symmetric increase in Al accumulation is observed, relative to Ti, with Al/Ti ratios reaching values 3-4 times that of potential detrital sources. The profile parallels biogenic accumulation and the modeled flux of particulate 234Th, suggesting rapid and preferential adsorptive removal of Al from seawater by settling biogenic particles. Normative calculations confirm that most Al is unsupported by the terrigenous fraction. The observed distributions are consistent with previous observations of the relative and absolute behavior of Al and Ti in seawater, and we can construct a reasonable mass balance between the amount of seawater-sourced Al retained in the sediment and the amount of seawater Al available in the overlying column. The close tie between Al/Ti and biogenic accumulation (as opposed to concentration) emphasizes that biogenic sedimentary Al/Ti responds to removal-transport phenomena and not bulk sediment composition. Thus, in these sediments dominated by the biogenic component, the bulk Al/Ti ratio reflects biogenic particle flux, and by extension, productivity of the overlying seawater. The downcore profile of Al/Ti at 1.3°N displays marked increases during glacial episodes, similar to that observed across the surface transect, from a background value near Al/Ti of average upper crust. The excursions in Al/Ti are stratigraphically coincident with maxima in both bulk and CaCO3 accumulation and the excess Al appears to not be preferentially affiliated with opaline or organic phases. Consistent with the similar behavioral removal of Al and 234Th, the latter of which responds to the total particle flux, the Al flux reflects carbonate accumulation only because carbonate comprises the dominant flux in these particular deposits. These results collectively indicate that (1) Al in biogenic sediment and settling biogenic particles is strongly affected by a component adsorbed from seawater. Therefore, the common tenet that Al is dominantly associated with terrestrial particulate matter, and the subsequent use of Al distributions to calculate the abundance and flux of terrestrial material in settling particles and sediment, needs to be reevaluated. (2) The Al/Ti ratio in biogenic sediment can be used to trace the productivity of the overlying water, providing a powerful new paleochemical tool to investigate oceanic response to climatic variation. (3) The close correlation between the Al/Ti productivity signal and carbonate maxima downcore at 1.3°N suggests that the sedimentary carbonate maxima in the central equatorial Pacific Ocean record increased productivity during glacial episodes.
Resumo:
Biochemical composition of sedimentary organic matter (OM), vertical fluxes and bacterial distribution were studied at 15 stations (95-2270 m depth) in the Aegean Sea during spring and summer. Downward fluxes of labile OM were significantly higher in the northern than in the southern part and were higher in summer than in spring. Primary inputs of OM were not related to sedimentary OM concentrations, which had highest values in summer. Sedimentary chlorophyll-a concentrations were similar in the northern and southern parts. Carbohydrates, the main component of sedimentary OM, were about 1.2 times higher in the southern part than in the northern, without significant temporal changes. Total proteins were higher in summer and about double in the northern part. Sedimentary proteins appeared more dependent upon the downward flux of phytopigment than of proteins. Sedimentary OM was characterised by a relatively large fraction of soluble compounds and showed better quality in the northern part. The lack of a depth-related pattern in sedimentary OM and the similar concentrations in the two areas suggest that differences in sedimentary OM quality in the Aegean basin are dependent on system productivity; the bulk of sedimentary OM is largely conservative. Sedimentary bacterial density was about double in the northern part and higher in spring than in summer, but bacterial size was about three times higher in summer, resulting in a larger bacterial biomass in summer. Bacterial density was coupled with total and protein fluxes, indicating a rapid bacterial response to pelagic production. Bacterial biomass was significantly correlated with sedimentary protein and phytopigment concentrations, indicating a clear response to accumulation of labile OM in the sediments. In all cases bacteria accounted for <5% of the organic C and N pools. The efficiency of benthic bacteria in exploiting protein pools, estimated as amounts of protein available per unit bacterial biomass, indicates a constant ratio of about 70 µg proteins/µg C. This suggests a similar bacterial efficiency all over the area studied, unaffected by different trophic conditions.
Resumo:
Sedimentation in the central Pacific during the Jurassic and Early Cretaceous was dominated by abundant biogenic silica. A synthesis of the stratigraphy, lithology, petrology, and geochemistry of the radiolarites in Sites 801 and 800 documents the sedimentation processes and trends in the equatorial central Pacific from the Middle Jurassic through the Early Cretaceous. Paleolatitude and paleodepth reconstructions enable comparisons with previous DSDP sites and identification of the general patterns of sedimentation over a wide region of the Pacific. Clayey radiolarites dominated sedimentation on Pacific oceanic crust within tropical paleolatitudes from at least the latest Bathonian through Tithonian. Radiolarian productivity rose to a peak within 5° of the paleoequator, where accumulation rates of biogenic silica exceeded 1000 g/cm**2/m.y. Wavy-bedded radiolarian cherts developed in the upper Tithonian at Site 801 coinciding with the proximity of this site to the paleoequator. Ribbon-bedding of some radiolarian cherts exposed on Pacific margins may have formed from silicification of radiolarite deposited near the equatorial high-productivity zone where radiolarian/clay ratios were high. Silicification processes in sediments extensively mixed by bioturbation or enriched in clay or carbonate generally resulted in discontinuous bands or nodules of porcellanite or chert, e.g., a "knobby" radiolarite. Ribbon-bedded cherts require primary alternations of radiolarian-rich and clay-rich layers as an initial structural template, coupled with abundant biogenic silica in both layers. During diagenesis, migration of silica from clay-rich layers leaves radiolarian "ghosts" or voids, and the precipitation in adjacent radiolarite layers results in silicification of the inter-radiolarian matrix and infilling of radiolarian tests. Alternations of claystone and clay-rich radiolarian grainstone were deposited during the Callovian at Site 801 and during the Berriasian-Valanginian at Site 800, but did not silicify to form bedded chert. Carbonate was not preserved on the Pacific oceanic floor or spreading ridges during the Jurassic, perhaps due to an elevated level of dissolved carbon dioxide. During the Berriasian through Hauterivian, the carbonate compensation depth (CCD) descended to approximately 3500 m, permitting the accumulation of siliceous limestones at near-ridge sites. Carbonate accumulation rates exceeded 1500 g/cm**2/m.y. at sites above the CCD, yet there is no evidence of an equatorial carbonate bulge during the Early Cretaceous. In the Barremian and Aptian, the CCD rose, coincident with the onset of mid-plate volcanic activity. Abundance of Fe and Mn and the associated formation of authigenic Fe-smectite clays was a function of proximity to the spreading ridges, with secondary enrichments occurring during episodes of spreading-center reorganizations. Callovian radiolarite at Site 801 is anomalously depleted in Mn, which resulted either from inhibited precipitation of Mn-oxides by lower pH of interstitial waters induced by high dissolved oceanic CO2 levels or from diagenetic mobilization of Mn. Influx of terrigenous (eolian) clay apparently changed with paleolatitude and geological age. Cyclic variations in productivity of radiolarians and of nannofossils and in the influx of terrigenous clay are attributed to Milankovitch climatic cycles of precession (20,000 yr) and eccentricity (100,000 yr). Diagenetic redistribution of biogenic silica and carbonate enhanced the expression of this cyclic sedimentation. Jurassic and Lower Cretaceous sediments were deposited under oxygenated bottom-water conditions at all depths, accompanied by bioturbation and pervasive oxidation of organic carbon and metals. Despite the more "equable" climate conditions of the Mesozoic, the super-ocean of the Pacific experienced adequate deep-water circulation to prevent stagnation. Efficient nutrient recycling may have been a factor in the abundance of radiolarians in this ocean basin.
Resumo:
A manganese oxide crust from an extensive deposit in the median valley of the Mid-Atlantic Ridge was found to be unusually high in manganese (up to 39.4% Mn), low in Fe (as low as 0.01% Fe), low in trace metals and deficient in Th230 and Pa231 with respect to the parent uranium isotopes in the sample. The accumulation rate is 100 mm to 200 mm/10 million year, or 2 orders of magnitude faster than the typical rate for deep-sea ferromanganese deposits. The rapid growth rate and unusual chemistry are consistent with a hydrothermal origin or with a diagenetic origin by manganese remobilized from reduced sediments. Because of the association with an active ridge, geophysical evidence indicative of hydrothermal activity, and a scarcity of sediment in the sampling area, we suggest that a submarine hot spring has created the deposit.
Resumo:
Since 1979/80, glaciological studies have been carried out at Ekströmisen, Antarctica, including accumulation-stake measurements, snow-pit and shallow-firn-core studies. Snowstratigraphy, chemical properties and stable-isotope ratios (d18O) were investigated. This study focuses on three cores taken between 1982 and 1998. The 1998 core was dated using dielectric profiling, d18O profiles and stake measurements. Accumulation rates showhigh interannual and spatial variability due to the extreme wind influence. No significant trend was found for the last 50 years; during the first half of the 20th century, accumulation decreased. The high spatial and interannual variability, however, means that trends must be interpreted with care. In spite of the highly irregular accumulation distribution, stable-isotope ratios show little spatial variability. The mean annual d18O values of cores B04 and FB0198 agree fairly well for the time period 1955-82 covered by both cores. d18O values have increased during most of the 20th century; since the late 1980s a decrease is observed. This change is not related to air temperature, since mean annual air temperatures at Neumayer show no significant trend over the last two decades.
Resumo:
To understand the late Cenozoic glacial history of the Northern Hemisphere, continuous long-term proxy records from climatically sensitive regions must be examined. Ice-rafted debris (IRD) from Ocean Drilling Program (ODP) Site 918, located in the Irminger Basin, is one such record. IRD in marine sediments is a direct indicator of the presence of glacial ice extending to sea level on adjacent landmasses, and, therefore, is an important paleoclimatic signal from the mid- to high latitudes. The IRD record at Site 918 is the first long-term ice-rafting record available for southeast Greenland, a region that may have been a key nucleation area for widespread glaciation during the late Cenozoic (Larsen et al, 1994, doi:10.2973/odp.proc.ir.152.1994). This data report presents the results of coarse sand-size IRD mass accumulation rate (MAR) analyses for Site 918 from the late Miocene through the Pleistocene. In addition, a preliminary analysis of IRD compositions is included. Detailed discussions of the local, regional, and global paleoclimatic implications of this data, and of the companion Site 919 Pleistocene IRD MAR data (Krissek, 1999, doi:10.2973/odp.proc.sr.163.118.1999), are in preparation. Such future work will include comparisons of these IRD MAR data sets to the Site 919 oxygen isotope stratigraphy developed by Flower (1998, doi:10.2973/odp.proc.sr.152.219.1998).
Resumo:
Accumulation rates in the eastern part of Ronne Ice Shelf were determined by isotopic stratigraphy (18O). The samples were taken from snow-pits dug during the Filchner I and II operations in 1984 and 1986. In general, the accumulation rate decreases towards the south; the greatest decrease, from 21.3 to 13.3 g/cm**2/a, was observed between Filchner Station and measuring point 341, sited 270 km up-stream of the ice edge. The d18O values of the near-surface layers vary between -25 and -29 per mil. The 18O content in the more southerly part is progressively depleted in the direction of Möllereisstrom, paralleling a decrease in the accumulation rate. Near the ice edge the 18O content decreases to the west. A 100 m ice core drilled in 1984 at point 340, 22 km from the ice edge, probably goes back to A.D. 1460; it has been dated by isotopic stratigraphy. The accumulation rate up-stream of the drilling site was deduced from the sequence of annual layers, using a simple ice-flow model. The accumulation shows strong variations over the last 200 years, which may be caused in part by local variations in the accumulation on Ronne Ice shelf.
Resumo:
Eocene to Holocene sediments from Ocean Drilling Program (ODP) Site 647 (Leg 105) in the southern Labrador Sea, approximately 200 km south of the Gloria Drift deposits, were investigated for their biogenic silica composition. Three sections of different diagenetic alteration products of primary siliceous components could be distinguished: (1) opal-A was recorded in the Miocene and the early Oligocene time intervals with strongly corroded siliceous skeletons in the Miocene and mostly well preserved biogenic opal in the early Oligocene; (2) opal-CT precipitation occurs between 250-440 meters below seafloor (mbsf) (earliest Oligocene to late Eocene); (3) between 620-650 mbsf (early/middle Eocene), biogenic opal was transformed to clay minerals by authigenesis of smectites. Using accumulation rates of biogenic opal, paleoproductivity was estimated for the early Oligocene to late Eocene interval. A maximum productivity of biogenic silica probably occurred between 35.5 and 34.5 Ma (early Oligocene). No evidence for opal sedimentation during most of middle Eocene was found. However, at the early/middle Eocene boundary (around 52 Ma), increased opal fluxes were documented by diagenetic alteration products of siliceous skeletons.
Resumo:
Detailed organic geochemical investigations have been performed on sediment samples from upwelling Site 658 and nonupwelling Sites 657 and 659. The major objective of this study has been the relationship between organic carbon accumulation and paleoclimatic and paleoceanographic conditions in the upwelling area off northwest Africa during late Cenozoic times. The study is based on results from organic carbon, nitrogen, and hydrogen analyses, Rock-Eval pyrolysis, kerogen microscopy, gas chromatography, and gas chromatography/mass spectrometry. In general, nonupwelling Sites 657 and 659 are characterized by low organic carbon values of less than 0.5%. At Site 657, four events of high organic carbon deposition (total organic carbon of 1%-3%) occur and represent turbidites and a slump interval. The upper Pliocene to Pleistocene sediments of upwelling Site 658 display high organic carbon contents of 0.5%-4%, with higher contents concentrated in the upper Pliocene. Accumulation rates of organic carbon vary between 0.1 and 0.5 gC/cm-**2/1000 yr, with maximum values between 3.5 and 3.1 Ma. Short-term cyclic ("Milankovitch-type") variations in organic carbon accumulation suggest climate-controlled mechanisms causing these fluctuations. The quality of organic matter at Site 658 is a mixture of kerogen type II and HI, with a dominance of the marine type. This is indicated by high hydrogen-index values of 200-400 mgHC/gC, low C/N ratios of 5-15, atomic H/C ratios of 1.0-1.5, and high amounts of marine macerals (alginite and liptodetrinite). We have estimated paleoproductivity for Sites 658 and 659 based on the amount of marine organic carbon. At open-marine Site 659, mean paleoproductivity varies between 20 and 50 gC/m**2/yr. At Site 658, mean paleoproductivity reaches high values of 160 to 320 gC/m**2/yr, very similar to those recorded in modern upwelling areas. The changes in productivity off northwest Africa are linked to changes in nutrient supply caused by both upwelling and fluvial input. The change from a dominantly humid climate to one characterized by fluctuations between humid and fully arid climates in northwest Africa occurs between 3.1 and 2.45 Ma.
Resumo:
In the monograph metalliferous sediments of the East Pacific Rise near 21°S are under consideration. Distribution trends of chemical, mineral and grain size compositions of metalliferous sediments accumulated near the axis of this ultrafast spreading segment of the EPR are shown. On the basis of lithological and geochemical investigations spatial and temporal variations of hydrothermal activity are estimated. Migration rates of hydrothermal fields along the spreading axis are calculated. The model of cyclic hydrothermal process is suggested as a result of tectono-magmatic development of the spreding centre.