486 resultados para engine particle number size distribution
Resumo:
Vertical carbon fluxes between the surface and 2500 m depth were estimated from in situ profiles of particle size distributions and abundances me/asured off Cape Blanc (Mauritania) related to deep ocean sediment traps. Vertical mass fluxes off Cape Blanc were significantly higher than recent global estimates in the open ocean. The aggregates off Cape Blanc contained high amounts of ballast material due to the presence of coccoliths and fine-grained dust from the Sahara desert, leading to a dominance of small and fast-settling aggregates. The largest changes in vertical fluxes were observed in the surface waters (<250 m), and, thus, showing this site to be the most important zone for aggregate formation and degradation. The degradation length scale (L), i.e. the fractional degradation of aggregates per meter settled, was estimated from vertical fluxes derived from the particle size distribution through the water column. This was compared with fractional remineralization rate of aggregates per meter settled derived from direct ship-board measurements of sinking velocity and small-scale O2 fluxes to aggregates measured by micro-sensors. Microbial respiration by attached bacteria alone could not explain the degradation of organic matter in the upper ocean. Instead, flux feeding from zooplankton organisms was indicated as the dominant degradation process of aggregated carbon in the surface ocean. Below the surface ocean, microbes became more important for the degradation as zooplankton was rare at these depths.
Resumo:
Lonestone abundances in CRP-1 were investigated using three methods: core examination at Cape Roberts Camp, analysis of digital core images and follow-up core examination. For all images of split-core, we determined size and depth of every detectable lonestone larger than 3 mm. Lonestone abundance decreases exponentially with clast size. Although no significant depth-dependent variations in lonestone size distribution were detected, a strong 0.5-0.7 m abundance periodicity, of unknown origin, is evident within diamicts. Lonestone volume percentage was estimated from size distribution: most size classes contribute approximately the same volume to the total. Sizes >16 mm have rare enough lonestones that their counts are nonrepresentative when based on short intervals of split core. This problem does not affect total counts significantly, but the volume analysis needs to be confined to <= 6 mm lonestones to avoid instability induced by rare and nonrepresentative larger lonestones. If lonestone abundance can be used as an indicator of glacial proximity, then our CRP-1 lonestone abundance logs confirm the overall character of previously inferred variations in relative distance to the ice margin. Large-scale changes in lonestone abundance also reflect the CRP-1 sequence stratigraphy, with individual sequences generally characterised by basal lonestone-rich diamict overlain by lonestone-poor sands and muds. The relationship between glacial proximity and lonestone abundance within diamicts and within sand-mud intervals is, however, less certain. For example, two or three gradual lonestone increases may indicate regressions during glacial advances, in contrast to the more common CRP-l pattern of dominantly transgressive sequences.
Resumo:
The planktonic diatom Fragilariopsis kerguelensis plays an important role in the biogeochemical cycles of the Southern Ocean, where remains of its frustules form the largest deposit of biogenic silica anywhere in the world. We assessed the genetic identity of 26 strains, from cells collected at various sites in the Southern Ocean, using three molecular markers, LSU and ITS rDNA and rbcL. The LSU sequences were identical among the tested strains, ITS sequences were highly similar, and only one base pair difference was detected among the rbcL sequences. These results, together with a large number of successful mating experiments demonstrated that the strains belong to a single biological species. We investigated the mating system and life cycle traits of F. kerguelensis. Cell size diminished gradually in clonal strains. Gamete formation only occurred when strains of opposite mating type - within a cell size range of 7-36 µm - were mixed together. Two binucleate gametes were formed in each gametangium and gamete conjugation produced a zygote that had four nuclei and was surrounded by thin siliceous scales. Two out of the four nuclei subsequently degenerated and the zygote expanded to form an auxospore surrounded by a transverse and a longitudinal perizonium. Staining with the fluorochrome PDMPO provided for the first time a clear demonstration that the longitudinal perizonium is formed after auxospore expansion is complete. Initial cells produced within the mature auxospores were 78-101 µm in length. Various authors have shown that the average valve size of F. kerguelensis varies in sediment samples collected in regions and seasons with different primary production regimes and this parameter has thus been proposed as a biological proxy for palaeo-productivity. A better understanding of the life cycle of F. kerguelensis should help the design of future investigations aimed at testing the link between cell size distribution in the natural environment and the role that environmental factors might have in the regulation of population cell size.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Sediment dynamics on a storm-dominated shelf (western Bay of Plenty, New Zealand) were mapped and analyzed using the newly developed multi-sensor benthic profiler MARUM NERIDIS III. An area of 60 km × 7 km between 2 and 35 m water depth was surveyed with this bottom-towed sled equipped with a high-resolution camera for continuous close-up seafloor photography and a CTD with connected turbidity sensor. Here we introduce our approach of using this multi-parameter dataset combined with sidescan sonography and sedimentological analyses to create detailed lithofacies and bedform distribution maps and to derive regional sediment transport patterns. For the assessment of sediment distribution, photographs were classified and their spatial distribution mapped out according to associated acoustic backscatter from a sidescan sonar. This provisional map was used to choose target locations for surficial sediment sampling and subsequent laboratory analysis of grain size distribution and mineralogical composition. Finally, photographic, granulometric and mineralogical facies were combined into a unified lithofacies map and corresponding stratigraphic model. Eight distinct types of lithofacies with seawards increasing grain size were discriminated and interpreted as reworked relict deposits overlain by post-transgressional fluvial sediments. The dominant transport processes in different water depths were identified based on type and orientation of bedforms, as well as bottom water turbidity and lithofacies distribution. Observed bedforms include subaquatic dunes, coarse sand ribbons and sorted bedforms of varying dimensions, which were interpreted as being initially formed by erosion. Under fair weather conditions, sediment is transported from the northwest towards the southeast by littoral drift. During storm events, a current from the southeast to the northweast is induced which is transporting sediment along the shore in up to 35 m water depth. Shorewards oriented cross-shore transport is taking place in up to 60 m water depth and is likewise initiated by storm events. Our study demonstrates how benthic photographic profiling delivers comprehensive compositional, structural and environmental information, which compares well with results obtained by traditional probing methods, but offers much higher spatial resolution while covering larger areas. Multi-sensor benthic profiling enhances the interpretability of acoustic seafloor mapping techniques and is a rapid and economic approach to seabed and habitat mapping especially in muddy to sandy facies.
Resumo:
The oceanic carbon cycle mainly comprises the production and dissolution/ preservation of carbonate particles in the water column or within the sediment. Carbon dioxide is one of the major controlling factors for the production and dissolution of carbonate. There is a steady exchange between the ocean and atmosphere in order to achieve an equilibrium of CO2; an anthropogenic rise of CO2 in the atmosphere would therefore also increase the amount of CO2 in the ocean. The increased amount of CO2 in the ocean, due to increasing CO2-emissions into the atmosphere since the industrial revolution, has been interpreted as "ocean acidification" (Caldeira and Wickett, 2003). Its alarming effects, such as dissolution and reduced CaCO3 formation, on reefs and other carbonate shell producing organisms form the topic of current discussions (Kolbert, 2006). Decreasing temperatures and increasing pressure and CO2 enhance the dissolution of carbonate particles at the sediment-water interface in the deep sea. Moreover, dissolution processes are dependent of the saturation state of the surrounding water with respect to calcite or aragonite. Significantly increased dissolution has been observed below the aragonite or calcite chemical lysocline; below the aragonite compensation depth (ACD), or calcite compensation depth (CCD), all aragonite or calcite particles, respectively, are dissolved. Aragonite, which is more prone to dissolution than calcite, features a shallower lysocline and compensation depth than calcite. In the 1980's it was suggested that significant dissolution also occurs in the water column or at the sediment-water interface above the lysocline. Unknown quantities of carbonate produced at the sea surface, would be dissolved due to this process. This would affect the calculation of the carbonate production and the entire carbonate budget of the world's ocean. Following this assumption, a number of studies have been carried out to monitor supralysoclinal dissolution at various locations: at Ceara Rise in the western equatorial Atlantic (Martin and Sayles, 1996), in the Arabian Sea (Milliman et al., 1999), in the equatorial Indian Ocean (Peterson and Prell, 1985; Schulte and Bard, 2003), and in the equatorial Pacific (Kimoto et al., 2003). Despite the evidence for supralysoclinal dissolution in some areas of the world's ocean, the question still exists whether dissolution occurs above the lysocline in the entire ocean. The first part of this thesis seeks answers to this question, based on the global budget model of Milliman et al. (1999). As study area the Bahamas and Florida Straits are most suitable because of the high production of carbonate, and because there the depth of the lysocline is the deepest worldwide. To monitor the occurrence of supralysoclinal dissolution, the preservation of aragonitic pteropod shells was determined, using the Limacina inflata Dissolution Index (LDX; Gerhardt and Henrich, 2001). Analyses of the grain-size distribution, the mineralogy, and the foraminifera assemblage revealed further aspects concerning the preservation state of the sediment. All samples located at the Bahamian platform are well preserved. In contrast, the samples from the Florida Straits show dissolution in 800 to 1000 m and below 1500 m water depth. Degradation of organic material and the subsequent release of CO2 probably causes supralysoclinal dissolution. A northward extension of the corrosive Antarctic Intermediate Water (AAIW) flows through the Caribbean Sea into the Gulf of Mexico and might enhance dissolution processes at around 1000 m water depth. The second part of this study deals with the preservation of Pliocene to Holocene carbonate sediments from both the windward and leeward basins adjacent to Great Bahama Bank (Ocean Drilling Program Sites 632, 633, and 1006). Detailed census counts of the sand fraction (250-500 µm) show the general composition of the coarse grained sediment. Further methods used to examine the preservation state of carbonates include the amount of organic carbon and various dissolution indices, such as the LDX and the Fragmentation Index. Carbonate concretions (nodules) have been observed in the sand fraction. They are similar to the concretions or aggregates previously mentioned by Mullins et al. (1980a) and Droxler et al. (1988a), respectively. Nonetheless, a detailed study of such grains has not been made to date, although they form an important part of periplatform sediments. Stable isotopemeasurements of the nodules' matrix confirm previous suggestions that the nodules have formed in situ as a result of early diagenetic processes (Mullins et al., 1980a). The two cores, which are located in Exuma Sound (Sites 632 and 633), at the eastern margin of Great Bahama Bank (GBB), show an increasing amount of nodules with increasing core depth. In Pliocene sediments, the amount of nodules might rise up to 100%. In contrast, nodules only occur within glacial stages in the deeper part of the studied core interval (between 30 and 70 mbsf) at Site 1006 on the western margin of GBB. Above this level the sediment is constantly being flushed by bottom water, that might also contain corrosive AAIW, which would hinder cementation. Fine carbonate particles (<63 µm) form the matrix of the nodules and do therefore not contribute to the fine fraction. At the same time, the amount of the coarse fraction (>63 µm) increases due to the nodule formation. The formation of nodules might therefore significantly alter the grain-size distribution of the sediment. A direct comparison of the amount of nodules with the grain-size distribution shows that core intervals with high amounts of nodules are indeed coarser than the intervals with low amounts of nodules. On the other hand, an initially coarser sediment might facilitate the formation of nodules, as a high porosity and permeability enhances early diagenetic processes (Westphal et al., 1999). This suggestion was also confirmed: the glacial intervals at Site 1006 are interpreted to have already been rather coarse prior to the formation of nodules. This assumption is based on the grain-size distribution in the upper part of the core, which is not yet affected by diagenesis, but also shows coarser sediment during the glacial stages. As expected, the coarser, glacial deposits in the lower part of the core show the highest amounts of nodules. The same effect was observed at Site 632, where turbidites cause distinct coarse layers and reveal higher amounts of nodules than non-turbiditic sequences. Site 633 shows a different pattern: both the amount of nodules and the coarseness of the sediment steadily increase with increasing core depth. Based on these sedimentological findings, the following model has been developed: a grain-size pattern characterised by prominent coarse peaks (as observed at Sites 632 and 1006) is barely altered. The greatest coarsening effect due to the nodule formation will occur in those layers, which have initially been coarser than the adjacent sediment intervals. In this case, the overall trend of the grain-size pattern before and after formation of the nodules is similar to each other. Although the sediment is altered due to diagenetic processes, grain size could be used as a proxy for e.g. changes in the bottom-water current. The other case described in the model is based on a consistent initial grain-size distribution, as observed at Site 633. In this case, the nodule reflects the increasing diagenetic alteration with increasing core depth rather than the initial grain-size pattern. In the latter scenario, the overall grain-size trend is significantly changed which makes grain size unreliable as a proxy for any palaeoenvironmental changes. The results of this study contribute to the understanding of general sedimentation processes in the periplatform realm: the preservation state of surface samples shows the influence of supralysoclinal dissolution due to the degradation of organic matter and due to the presence of corrosive water masses; the composition of the sand fraction shows the alteration of the carbonate sediment due to early diagenetic processes. However, open questions are how and when the alteration processes occur and how geochemical parameters, such as the rise in alkalinity or the amount of strontium, are linked to them. These geochemical parameters might reveal more information about the depth in the sediment column, where dissolution and cementation processes occur.