499 resultados para 329.269
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
The quantitative diatom analysis of 218 surface sediment samples recovered in the Atlantic and western Indian sector of the Southern Ocean is used to define a base of reference data for paleotemperature estimations from diatom assemblages using the Imbrie and Kipp transfer function method. The criteria which justify the exclusion of samples and species out of the raw data set in order to define a reference database are outlined and discussed. Sensitivity tests with eight data sets were achieved evaluating the effects of overall dominance of single species, different methods of species abundance ranking, and no-analog conditions (e.g., Eucampia Antarctica) on the estimated paleotemperatures. The defined transfer functions were applied on a sediment core from the northern Antarctic zone. Overall dominance of Fragilariopsis kerguelensis in the diatom assemblages resulted in a close affinity between paleotemperature curve and relative abundance pattern of this species downcore. Logarithmic conversion of counting data applied with other ranking methods in order to compensate the dominance of F. kerguelensis revealed the best statistical results. A reliable diatom transfer function for future paleotemperature estimations is presented.