621 resultados para BNCT, Strahlentherapie, ICP-MS, PGAA, Radiographie


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small-scale shear zones are present in drillcore samples of abyssal peridotites from the Mid-Atlantic ridge at 15°20'N (Ocean Drilling Program Leg 209). The shear zones act as pathways for both evolved melts and hydrothermal fluids. We examined serpentinites directly adjacent to such zones to evaluate chemical changes resulting from melt-rock and fluid-rock interaction and their influence on the mineralogy. Compared to fresh harzburgite and melt-unaffected serpentinites, serpentinites adjacent to melt-bearing veins show a marked enrichment in rare earth elements (REE), strontium and high field strength elements (HFSE) zirconium and niobium. From comparison with published chemical data of variably serpentinized and melt-unaffected harzburgites, one possible interpretation is that interaction with the adjacent melt veins caused the enrichment in HFSE, whereas the REE contents might also be enriched due to hydrothermal processes. Enrichment in alumina during serpentinization is corroborated by reaction path models for interaction of seawater with harzburgite-plagiogranite mixtures. These models explain both increased amounts of alumina in the serpentinizing fluid for increasing amounts of plagiogranitic material mixed with harzburgite, and the absence of brucite from the secondary mineralogy due to elevated silica activity. By destabilizing brucite, nearby melt veins might fundamentally influence the low-temperature alteration behaviour of serpentinites. Although observations and model results are in general agreement, due to absence of any unaltered protolith a quantification of element transport during serpentinization is not straightforward.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of geological studies at the submarine Vityaz Ridge carried out during cruises 37 and 41 of R/V Akademik Lavrent'ev in 2005 and 2006 are reported. The studied area is located at an near-island trench of the slope in the central part of the Kuril Island arc. Morphologically it consists of two parts: an inner volcanic arc represented by the Great Kuril Range and an outer arc corresponding to the submarine Vityaz Ridge. Diverse rocks composing the basement and the sedimentary cover of the ridge were recovered by dredging. Based on K-Ar dating and geochemistry, volcanics were divided into Paleocene, Eocene, late Oligocene, and Pliocene-Pleistocene complexes. Each of the complexes reflects a tectonomagmatic stage in the ridge evolution. Geochemical and isotope data on the volcanics indicate contribution of ancient crustal material in the magma source and, correspondingly, formation of this structure on the continental basement. Two-stage model ages (TDM2) vary in a wide range from zero values in mafic rocks to 0.77 Ga in felsic varieties, pointing to presence of Precambrian protolith in the source of the felsic rocks of the Vityaz Ridge. The Pliocene-Pleistocene volcanics are classed with tholeiitic, calc-alkaline, and subalkaline series, which differ in alkali contents and REE fractionation. Values of (La/Sm)_n and (La/Yb)_n ratios vary from 0.74 and 0.84 in the tholeiitic varieties to 1.19 and 1.44 in the calc-alkaline and 2.32 and 3.73 in the subalkaline rocks. All three varieties occur within the same volcanic edifices and formed during differentiation of magmatic melts that were channeled along fault zones from the mantle source slightly enriched in crustal component.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composition of clay minerals in the <0.001 mm size fraction from the uppermost layer of bottom sediments in the northern Amur Bay was determined by X-ray powder diffraction analysis, and enrichment of 33 elements in the <0.001 mm and <0.01 mm size fractions of surface sediments from a number of sites at the marginal filter of the Razdol'naya River were studied by ICP-MS. Fe, U, and chalcophile elements occur in the highest concentrations in sediments from all sampling sites within the filter. The bottom sediments are not enriched in trace, alkali, and alkaline earth elements. Maximum concentrations of chemical elements were found in deposits from the brackish part of the marginal filter, perhaps, because of formation of Fe and Mn (Al) hydroxides. Bottom sediments at the boundary between the brackish and marine parts of the filter contain the lowest concentrations of the examined elements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barium concentrations were measured on 17 pore fluid and 13 sediment samples from Sites 1253 and 1254 drilled offshore Costa Rica during Ocean Drilling Program (ODP) Leg 205. An additional 83 pore fluid and 29 sediment samples were analyzed for Ba concentrations from Sites 1039 and 1040 drilled during ODP Leg 170 offshore Costa Rica. Sites 1039/1253 and 1040/1254 are part of a transect across the Middle America Trench offshore Nicoya Peninsula. The entire incoming sediment section is being underthrust beneath the margin, providing an ideal setting to examine Ba cycling in the shallow levels of the subduction zone. Results from these analyses indicate that a significant amount of Ba is liberated from the mineral barite (BaSO4) in the uppermost hemipelagic sediments arcward of the trench. The shallow distillation of Ba may impact the amount of sedimentary Ba reaching the deeper subduction zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New data on elemental composition of particulate matter from the North Dvina River are presented. In May (period of snowmelt flood) it is similar to the upper layer of the continental crust due to active erosion of crust material in the catchment area. In August (summer low water period) impact of biogenic components increases and elevated concentrations of Cd, Sb, Mn, Zn, Pb, and Cu are observed. At other seasons no significant increase in heavy and rare earth element concentrations is observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The large-diameter piston core LL44-GPC3 from the central North Pacific Ocean records continuous sedimentation of eolian dust since the Late Cretaceous. Two intervals resolved by Nd and Pb isotopic data relate to dust coming from America (prior to ~40 Ma) and dust coming from Asia (since ~40 Ma). The Intertropical Convergence Zone (ITCZ) separates these depositional regimes today and may have been at a paleolatitude of ~23°N prior to 40 Ma. Such a northerly location of the ITCZ is consistent with sluggish atmospheric circulation and warm climate for the Northern Hemisphere of the early to middle Eocene. Since ~40 Ma, correlations between Nd (~7.55 > epsilon-Nd(t) > ~10.81) and Pb (18.625 < 206/4Pb < 18.879; 15.624 < 207/4Pb < 15.666; 38.611 < 208/4Pb < 38.960; 0.8294 < 207/6Pb < 0.8389; 2.0539 < 208/6Pb < 2.0743) isotopes reflect the progressive drying of central Asia triggered by the westward retreat of the paleo-Tethys. Comparisons between the changes with time in the isotopically well-defined dust flux and Nd and Pb isotopic compositions of Pacific deep water allow one to draw two major conclusions: (1) dust-bound Nd became a resolvable contribution to Pacific seawater only after the one order of magnitude increase in dust flux starting at ~3.5 Ma. Therefore eolian Nd was unimportant for Pacific seawater Nd prior to 3.5 Ma. (2) The lack of a response of Pacific deep water Pb to this huge flux increase suggests that dust-bound Pb has never been important. Instead, mobile Pb associated with island arc volcanic exhalatives probably consists of a significant contribution to Pacific deep water Pb and possibly to seawater elsewhere far away from landmasses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the essential problems of oceanic tectonics is estimation of the influence of plumes of the deep hot mantle on processes in the axial spreading zone. Areas of two giant (St. Helena and Tristan da Cunha) plumes in the Mid-Atlantic Ridge (MAR) rift zone (South Atlantic) are characterized by the effusion of basalts that differ from typical depleted riftogenic tholeiites by anomalously high contents of lithophile components and specific isotopic compositions. Moreover, the rift valley floor with basalt effusion is significantly uplifted above the adjacent sectors of the rift. The formation of the St. Helena Seamount located 400 km east of the MAR axis is related to magmatism that is active to this day. St. Helena Island is a member of the structural ensemble of large volcanic seamounts (Bonaparte, Bagration, and Kutuzov). Like St. Helena Island, each seamount incorporates a series of smaller rises of different morphologies and dimensions. Thus, a system of subparallel series of NE-trending (~45°) rises extend from the seamount ensemble to the African continent. According to the plate tectonics concept, the seamount series represent hotspots related to a deep mantle plume that can be projected onto the present-day St. Helena Island area (St. Helena plume). At the same time, the inferred topographic map based on satellite altimetry data shows that the seamount series also extend along the opposite southwestern direction (~225°) toward the axial MAR and even intersect the latter structure. This fact cannot be explained by the hotspot hypothesis, which suggests stationary positions of plumes relative to the mobile oceanic plate. In the course of Cruise 10 of the R/V Akademik Ioffe (2002), detailed geological and geophysical investigations were carried out at the junction of one structural series with the MAR rift zone located near the Martin Vaz Fracture Zone (Martin Vaz test area, 19°-20° S). The present communication is devoted to the study of lithology, geochemistry, and isotopy of basalts dredged at the test area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nature of Re-platinum-group element (PGE; Pt, Pd, Ir, Os, Ru) transport in the marine environment was investigated by means of marine sediments at and across the Cretaceous-Tertiary boundary (KTB) at two hemipelagic sites in Europe and two pelagic sites in the North and South Pacific. A traverse across the KTB in the South Pacific pelagic clay core found elevated levels of Re, Pt, Ir, Os, and Ru, each of which is approximately symmetrically distributed over a distance of ~1.8 m across the KTB. The Re-PGE abundance patterns are fractionated from chondritic relative abundances: Ru, Pt, Pd, and Re contents are slightly subchondritic relative to Ir, and Os is depleted by ~95% relative to chondritic Ir proportions. A similar depletion in Os (~90%) was found in a sample of the pelagic KTB in the North Pacific, but it is enriched in Ru, Pt, Pd, and Re relative to Ir. The two hemipelagic KTB clays have near-chondritic abundance patterns. The ~1.8-m-wide Re-PGE peak in the pelagic South Pacific section cannot be reconciled with the fallout of a single impactor, indicating that postdepositional redistribution has occurred. The elemental profiles appear to fit diffusion profiles, although bioturbation could have also played a role. If diffusion had occurred over ~65 Ma, the effective diffusivities are ~10**?13 cm**2/s, much smaller than that of soluble cations in pore waters (~10**?6 cm**2/s). The coupling of Re and the PGEs during redistribution indicates that postdepositional processes did not significantly fractionate their relative abundances. If redistribution was caused by diffusion, then the effective diffusivities are the same. Fractionation of Os from Ir during the KTB interval must therefore have occurred during aqueous transport in the marine environment. Distinctly subchondritic Os/Ir ratios throughout the Cenozoic in the South Pacific core further suggest that fractionation of Os from Ir in the marine environment is a general process throughout geologic time because most of the inputs of Os and Ir into the ocean have Os/Ir ratios >/=1. Mass balance calculations show that Os and Re burial fluxes in pelagic sediments account for only a small fraction of the riverine Os (<10%) and Re (<0.1%) inputs into the oceans. In contrast, burial of Ir in pelagic sediments is similar to the riverine Ir input, indicating that pelagic sediments are a much larger repository for Ir than for Os and Re. If all of the missing Os and Re is assumed to reside in anoxic sediments in oceanic margins, the calculated burial fluxes in anoxic sediments are similar to observed burial fluxes. However, putting all of the missing Os and Re into estuarine sediments would require high concentrations to balance the riverine input and would also fail to explain the depletion of Os at pelagic KTB sites, where at most ~25% of the K-T impactor's Os could have passed through estuaries. If Os is preferentially sequestered in anoxic marine environments, it follows that the Os/Ir ratio of pelagic sediments should be sensitive to changes in the rates of anoxic sediment deposition. There is thus a clear fractionation of Os and Re from Ir in precipitation out of sea water in pelagic sections. Accordingly, it is inferred here that Re and Os are removed from sea water in anoxic marine depositional regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present excess Ba (Baxs) data (i.e., total Ba corrected for lithogenic Ba) for surface sediments from a north-south transect between the Polar Front Zone and the northern Weddell Gyre in the Atlantic sector and between the Polar Front Zone and the Antarctic continent in the Indian sector. Focus is on two different processes that affect excess Ba accumulation in the sediments: sediment redistribution and excess Ba dissolution. The effect of these processes needs to be corrected for in order to convert accumulation rate into vertical rain rate, the flux component that can be linked to export production. In the Southern Ocean a major process affecting Ba accumulation rate is sediment focusing, which is corrected for using excess 230Th. This correction, however, may not always be straightforward because of boundary scavenging effects. A further major process affecting excess Ba accumulation is barite dissolution during exposure at the sediment-water column interface. Export production estimates derived from excess 230Th and barite dissolution corrected Baxs accumulation rates (i.e., excess Ba vertical rain rates) are of the same magnitude but generally larger than export production estimates based on water column proxies (234Th-deficit in the upper water column; particulate excess Ba enrichment in the mesopelagic water column). We believe export production values based on excess Ba vertical rain rate might be overestimated due to inaccurate assessment of the Baxs preservation rate. Barite dissolution has, in general, been taken into account by relating it to exposure time before burial depending on the rate of sediment accumulation. However, the observed decrease of excess Ba content with increasing water column depth (or increasing hydrostatic pressure) illustrates the dependence of barite preservation on degree of saturation in the deep water column in accordance with available thermodynamic data. Therefore correction for barite dissolution would not be appropriate by considering only exposure time of the barite to some uniformly undersaturated deep water but requires also that regional differences in degree of undersatuation be taken into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty-six samples representing the wide range of lithologies (low- and intermediate-Ca boninites and bronzite andesites, high-Ca boninites, basaltic andesites-rhyolites) drilled during Leg 125 at Sites 782 and 786 on the Izu-Bonin outer-arc high have been analyzed for Sr, Nd, and Pb isotopes. Nd-Sr isotope covariations show that most samples follow a trend parallel to a line from Pacific MORB mantle (PMM) to Pacific Volcanogenic sediment (PVS) but displaced slightly toward more radiogenic Sr. Pb isotope covariations show that all the Eocene-Oligocene samples plot along the Northern Hemisphere Reference Line, indicating little or no Pb derived from subducted pelagic sediment in their source. Two young basaltic andesite clasts within sediment do have a pelagic sediment signature but this may have been gained by alteration rather than subduction. In all isotopic projections, the samples form consistent groupings: the tholeiites from Site 782 and Hole 786A plot closest to PMM, the boninites and related rocks from Sites 786B plot closest to PVS, and the boninite lavas from Hole 786A and late boninitic dikes from Hole 786B occupy an intermediate position. Isotope-trace element covariations indicate that these isotopic variations can be explained by a three-component mixing model. One component (A) has the isotopic signature of PMM but is depleted in the more incompatible elements. It is interpreted as representing suboceanic mantle lithosphere. A second component (B) is relatively radiogenic (epsilon-Nd = ca 4-6; 206Pb/204Pb = ca 19.0-19.3; epsilon-Sr = ca -10 to -6)). Its trace element pattern has, among other characteristics, a high Zr/Sm ratio, which distinguishes it from the ìnormalî fluid components associated with subduction and hotspot activity. There are insufficient data at present to tie down its origin: probably it was either derived from subducted lithosphere or volcanogenic sediment fused in amphibolite facies; or it represents an asthenospheric melt component that has been fractionated by interaction with amphibole-bearing mantle. The third component (C) is characterized by high contents of Sr and high epsilon-Sr values and is interpreted as a subducted fluid component. The mixing line on a diagram of Zr/Sr against epsilon-Sr suggests that component C may have enriched the lithosphere (component A) before component B. These components may also be present on a regional basis but, if so, may not have had uniform compositions. Only the boninitic series from nearby Chichijima would require an additional, pelagic sediment component. In general, these results are consistent with models of subduction of ridges and young lithosphere during the change from a ridge-transform to subduction geometry at the initiation of subduction in the Western Pacific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study uses a multiproxy approach in order to further understand the evolution of climate responses in the western Mediterranean as of the Last Glacial Maximum. Sediments from ODP Site 975 in the Algero-Balearic basin have been analysed at high resolution, both geochemically andmineralogicallly. The resulting data have been used as proxies to establish a sedimentary regime, primary marine productivity, the preservation of the proxies and oxygen conditions. Fluctuations in detrital element concentrations were mainly the consequence of wet/arid oscillations. Productivity has been established using Ba excess, according to which marine productivity appears to have been greatest during cold events Heinrich 1 and Younger Dryas. The S1 time interval was not as marked by increases in productivity as was the eastern Mediterranean. In contrast, the S1 interval was first characterized by a decreasing trend and then by a fall in productivity after the 8.2 ky BP dry-cold event. Since then productivity has remained low. Here we report that there was an important redox event in this basin, probably a consequence of the major oceanographic circulation change occurring in the western Mediterranean at 7.7 ky BP. This circulation change led to reventilation as well as to diagenetic remobilization of redox-sensitive elements and organic matter oxidation. Comparisons between our paleoceanographic reconstruction for this basin and those regarding other Mediterranean basins support the hypothesis that across the Mediterranean there were different types of responses to climate forcing mechanism. The Algero-Balearic basin is likely to be a key area for further understanding of the relationships between the North Atlantic and the eastern Mediterranean basins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lost City hydrothermal system at the southern Atlantis Massif (Mid-Atlantic Ridge, 30°N) provides a natural laboratory for studying serpentinization processes, the temporal evolution of ultramafic-hosted hydrothermal systems, and alteration conditions during formation and emplacement of an oceanic core complex. Here we present B, O, and Sr isotope data to investigate fluid/rock interaction and mass transfer during detachment faulting and exhumation of lithospheric sequences within the Atlantis Massif. Our data indicate that extensive serpentinization was a seawater-dominated process that occurred predominately at temperatures of 150-250 °C and at high integrated W/R ratios that led to a marked boron enrichment (34-91 ppm). Boron removal from seawater during serpentinization is positively correlated with changes in d11B (11-16 per mil) but shows no correlation with O-isotope composition. Modeling indicates that B concentrations and isotope values of the serpentinites are controlled by transient temperature-pH conditions. In contrast to prior studies, we conclude that low-temperature marine weathering processes are insignificant for boron geochemistry of the Atlantis Massif serpentinites. Talc- and amphibole-rich fault rocks formed within a zone of detachment faulting at temperatures of approximately 270-350 °C and at low W/R ratios. Talc formation in ultramafic domains in the massif was subsequent to an early stage of serpentinization and was controlled by the access of Si-rich fluids derived through seawater-gabbro interactions. Replacement of serpentine by talc resulted in boron loss and significant lowering of d11B values (9-10 per mil), which we model as the product of progressive extraction of boron. Our study provides new constraints on the boron geochemical cycle at oceanic spreading ridges and suggests that serpentinization associated with ultramafic-hosted hydrothermal systems may have important implications for the behavior of boron in subduction zone settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Pacific Decadal Oscillation (PDO), the leading mode of sea surface temperature (SST) anomalies in the extratropical North Pacific Ocean, has widespread impacts on precipitation in the Americas and marine fisheries in the North Pacific. However, marine proxy records with a temporal resolution that resolves interannual to interdecadal SST variability in the extratropical North Pacific are extremely rare. Here we demonstrate that the winter Sr/Ca and U/Ca records of an annually-banded reef coral from the Ogasawara Islands in the western subtropical North Pacific are significantly correlated with the instrumental winter PDO index over the last century. The reconstruction of the PDO is further improved by combining the coral data with an existing eastern mid-latitude North Pacific growth ring record of geoduck clams. The spatial correlations of this combined index with global climate fields suggest that SST proxy records from these locations provide potential for PDO reconstructions further back in time.