519 resultados para epsilon-Neodymium


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to characterize the provenance of lithogenic surface sediments from the Eastern Mediterranean Sea (EMS), residual (leached) fraction of 34 surface samples have been analysed for their 143Nd/144Nd and 87Sr/86Sr isotope ratios. The sample locations bracket all important entrances of riverine suspended matter into the EMS as well as all sub-basins of the EMS. The combined analyses of these two isotope ratios provide a precise characterization of the lithogenic fraction of surface sediments and record their dilution towards the central sub-basins. We reconstruct provenance and possible pathways of riverine dispersal and current redistribution, assuming more or less homogenous isotopic signatures and flux rates of the eolian fraction over the EMS. Lithogenic sediments entering the Ionian Sea from the Calabrian Arc and the Adriatic Sea are characterized by high 87Sr/86Sr isotope ratios and low epsilon-Nd(0) values (average 87Sr/86Sr=0.718005 and epsilon-Nd(0)=-11.06, n=5). Aegean Sea terrigenous sediments show an average ratio of 87Sr/86Sr=0.713089 (n=5) and values of epsilon-Nd(0)=-7.89 (n=5). The Aegean isotopic signature is traceable up to the southwest, south, and southeast of Crete. The sediment loads entering the EMS via the Aegean Sea are low and spread out mainly through the Strait of Casos (east of Crete). Surface sediments from the eastern Levantine Basin are marked by the highest epsilon-Nd(0) values (-3.3, n=6) and lowest 87Sr/86Sr isotope ratios (average 0.709541, n=6), reflecting the predominant input of the Nile sediment. The influence of the Nile sediment is traceable up to the NE-trending, eastern flank of the Mediterranean Ridge. The characterization of the modern riverine dispersal and eolian flux, based on isotope data, may serve as a tool to reconstruct climate-coupled variations of lithogenic sediment input into the EMS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Identifying terrigenous sources in deep-sea sediments may reveal temporal trends in paleocirculation and the relative role of eolian, upwelled, and hemipelagic Fe sources to surface waters. Bulk elemental and isotopic geochemistry of deep-sea sediments recovered during Ocean Drilling Program Leg 177 in the southeastern Atlantic sector of the Southern Ocean reveal several important aspects of paleocirculation and terrigenous provenance. The sites studied span 43°-53°S and represent different oceanographic settings relative to regional hydrography and sediment type. Bulk sediment geochemistry indicates that terrigenous provenance varied over the past 600 k.y. Site 1089, the northernmost site, exhibits clear glacial-interglacial variability in provenance, while provenance appears to vary regardless of climate state at the more southerly sites (Site 1093 and 1094). Nd and Sr isotopes and Sm/Nd ratios of the terrigenous fraction indicate that study sites have geochemically distinguishable provenance. Nd and Sr isotopes further suggest that Sites 1089 and 1094 both contain detrital components that originated in South America over the past 30 k.y.; however, Site 1089 is also influenced by southern African sources and the strength of the Agulhas Current. The e-Nd data support a more hemipelagic source for the terrigenous material rather than an eolian source based on comparisons with Antarctic ice core data and known sea-ice extent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We use quantitative X-ray diffraction to determine the mineralogy of late Quaternary marine sediments from the West and East Greenland shelves offshore from early Tertiary basalt outcrops. Despite the similar basalt outcrop area (60 000-70 000 km**2), there are significant differences between East and West Greenland sediments in the fraction of minerals (e.g. pyroxene) sourced from the basalt outcrops. We demonstrate the differences in the mineralogy between East and West Greenland marine sediments on three scales: (1) modern day, (2) late Quaternary inputs and (3) detailed down-core variations in 10 cores from the two margins. On the East Greenland Shelf (EGS), late Quaternary samples have an average quartz weight per cent of 6.2 ± 2.3 versus 12.8 ± 3.9 from the West Greenland Shelf (WGS), and 12.02 ± 4.8 versus 1.9 ± 2.3 wt% for pyroxene. K-means clustering indicated only 9% of the samples did not fit a simple EGS vs. WGS dichotomy. Sediments from the EGS and WGS are also isotopically distinct, with the EGS having higher eNd (-18 to 4) than those from the WGS (eNd = -25 to -35). We attribute the striking dichotomy in sediment composition to fundamentally different long-term Quaternary styles of glaciation on the two basalt outcrops.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The circulation and internal structure of the oceans exert a strong influence on Earth's climate because they control latitudinal heat transport and the segregation of carbon between the atmosphere and the abyss (Sigman et al., 2010, doi:10.1038/nature09149). Circulation change, particularly in the Atlantic Ocean, is widely suggested (Bartoli et al., 2005, doi:10.1016/j.epsl.2005.06.020; Haug and Tiedemann, 1998, doi:10.1038/31447; Woodard et al., 2014, doi:10.1126/science.1255586; McKay et al., 2012, doi:10.1073/pnas.1112248109) to have been instrumental in the intensification of Northern Hemisphere glaciation when large ice sheets first developed on North America and Eurasia during the late Pliocene, approximately 2.7 million years ago (Bailey et al., 2013, doi:10.1016/j.quascirev.2013.06.004). Yet the mechanistic link and cause/effect relationship between ocean circulation and glaciation are debated. Here we present new records of North Atlantic Ocean structure using the carbon and neodymium isotopic composition of marine sediments recording deep water for both the Last Glacial to Holocene (35-5 thousand years ago) and the late Pliocene to earliest Pleistocene (3.3-2.4 million years ago). Our data show no secular change. Instead we document major southern-sourced water incursions into the deep North Atlantic during prominent glacials from 2.7 million years ago. Our results suggest that Atlantic circulation acts as a positive feedback rather than as an underlying cause of late Pliocene Northern Hemisphere glaciation. We propose that, once surface Southern Ocean stratification (Sigman, et al., 2004, doi:10.1038/nature02357) and/or extensive sea-ice cover (McKay et al., 2012, doi:10.1073/pnas.1112248109) was established, cold-stage expansions of southern-sourced water such as those documented here enhanced carbon dioxide storage in the deep ocean, helping to increase the amplitude of glacial cycles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the nutrient-rich Southern Ocean, Fe is a vital constituent controlling the growth of phytoplankton. Despite much effort, the origin and transport of Fe to the oceans are not well understood. In this study we address the issue with geochemical data and Nd isotopic compositions of suspended particle samples collected from 1997 to 1999 in the South Atlantic Sector of the Southern Ocean. Al, Th, and rare earth element (REE) concentrations as well as 143Nd/144Nd isotopic ratios in acetic acid-leached particle samples representing the lithogenic fraction delineate three major sources: (1) Patagonia and the Antarctic Peninsula provide material with eNd > -4 that is transported toward the east with the polar and subpolar front jets, (2) the south African shelf, although its influence is limited by the circumpolar circulation and wind direction, can account for material with eNd of -12 to -14 adjacent to South Africa, and (3) East Antarctica provides material with eNd of -10 to -15 to the eastern Weddell Sea and adjacent Antarctic Circumpolar Current. For this region we interpret the Nd isotopic evidence in combination with oceanographic/atmospheric constraints as evidence for supply of significant amounts of terrigenous detritus by icebergs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has long been known that extreme changes in North African hydroclimate occurred during the late Pleistocene yet many discrepancies exist between sites regarding the timing, duration and abruptness of events such as Heinrich Stadial (HS) 1 and the African Humid Period (AHP). The hydroclimate history of the Nile River is of particular interest due to its lengthy human occupation history yet there are presently few continuous archives from the Nile River corridor, and pre-Holocene studies are rare. Here we present new organic and inorganic geochemical records of Nile Basin hydroclimate from an eastern Mediterranean (EM) Sea sediment core spanning the past 28 ka BP. Our multi-proxy records reflect the fluctuating inputs of Blue Nile versus White Nile material to the EM Sea in response to gradual changes in local insolation and also capture abrupt hydroclimate events driven by remote climate forcings, such as HS1. We find strong evidence for extreme aridity within the Nile Basin evolving in two distinct phases during HS1, from 17.5 to 16 ka BP and from 16 to 14.5 ka BP, whereas peak wet conditions during the AHP are observed from 9 to 7 ka BP. We find that zonal movements of the Congo Air Boundary (CAB), and associated shifts in the dominant moisture source (Atlantic versus Indian Ocean moisture) to the Nile Basin, likely contributed to abrupt hydroclimate variability in northern East Africa during HS1 and the AHP as well as to non-linear behavior of hydroclimate proxies. We note that different proxies show variable gradual and abrupt responses to individual hydroclimate events, and thus might have different inherent sensitivities, which may be a factor contributing to the controversy surrounding the abruptness of past events such as the AHP. During the Late Pleistocene the Nile Basin experienced extreme hydroclimate fluctuations, which presumably impacted Paleolithic cultures residing along the Nile corridor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modern erosion of the Himalaya, the world's largest mountain range, transfers huge dissolved and particulate loads to the ocean. It plays an important role in the long-term global carbon cycle, mostly through enhanced organic carbon burial in the Bengal Fan. To understand the role of past Himalayan erosion, the influence of changing climate and tectonic on erosion must be determined. Here we use a 12 Myr sedimentary record from the distal Bengal Fan (Deep Sea Drilling Project Site 218) to reconstruct the Mio-Pliocene history of Himalayan erosion. We use carbon stable isotopes (d13C) of bulk organic matter as paleo-environmental proxy and stratigraphic tool. Multi-isotopic - Sr, Nd and Os - data are used as proxies for the source of the sediments deposited in the Bengal Fan over time. d13C values of bulk organic matter shift dramatically towards less depleted values, revealing the widespread Late Miocene (ca. 7.4 Ma) expansion of C4 plants in the basin. Sr, Nd and Os isotopic compositions indicate a rather stable erosion pattern in the Himalaya range during the past 12 Myr. This supports the existence of a strong connection between the southern Tibetan plateau and the Bengal Fan. The tectonic evolution of the Himalaya range and Southern Tibet seems to have been unable to produce large re-organisation of the drainage system. Moreover, our data do not suggest a rapid change of the altitude of the southern Tibetan plateau during the past 12 Myr. Variations in Sr and Nd isotopic compositions around the late Miocene expansion of C4 plants are suggestive of a relative increase in the erosion of High Himalaya Crystalline rock (i.e. a simultaneous reduction of both Transhimalayan batholiths and Lesser Himalaya relative contributions). This could be related to an increase in aridity as suggested by the ecological and sedimentological changes at that time. A reversed trend in Sr and Nd isotopic compositions is observed at the Plio-Pleistocene transition that is likely related to higher precipitation and the development of glaciers in the Himalaya. These almost synchronous moderate changes in erosion pattern and climate changes during the late Miocene and at the Plio-Pleistocene transition support the notion of a dominant control of climate on Himalayan erosion during this time period. However, stable erosion regime during the Pleistocene is suggestive of a limited influence of the glacier development on Himalayan erosion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ice cores provide a record of changes in dust flux to Antarctica, which is thought to reflect changes in atmospheric circulation and environmental conditions in dust source areas (Forster et al., 2007; Diekmann et al. 2000, doi:10.1016/S0031-0182(00)00138-3; Winckler et al., 2008, doi:10.1126/science.1150595; Reader et al., 1999, doi:10.1029/1999JD900033; Mahowald et al., 1999, doi:10.1029/1999JD900084; Petit et al., 1999, doi:10.1038/20859; 1990, doi:10.1038/343056a0 Delmonte et al., 2009, doi:10.1029/2008GL033382; Lambert et al., 2008, doi:10.1038/nature06763). Isotopic tracers suggest that South America is the dominant source of the dust (Grousset et al., 1992, doi:10.1016/0012-821X(92)90177-W; Basile et al., 1997, doi:10.1016/S0012-821X(96)00255-5; Gaiero et al., 2007, doi:10.1016/j.chemgeo.2006.11.003), but it is unclear what led to the variable deposition of dust at concentrations 20-50 times higher than present in glacial-aged ice (Petit et al., 1990, doi:10.1038/343056a0; Lambert et al., 2008, doi:10.1038/nature06763). Here we characterize the age and composition of Patagonian glacial outwash sediments, to assess the relationship between the Antarctic dust record from Dome C (refs Lambert et al., 2008, doi:10.1038/nature06763; Wolff et al., 2006, doi:10.1038/nature04614) and Patagonian glacial fluctuations (Sugden et al., 2005; McCulloch et al., 2005, doi:10.1111/j.0435-3676.2005.00260.x; Kaplan et al., 2008, doi:10.1016/j.quascirev.2007.09.013) for the past 80,000 years. We show that dust peaks in Antarctica coincide with periods in Patagonia when rivers of glacial meltwater deposited sediment directly onto easily mobilized outwash plains. No dust peaks were noted when the glaciers instead terminated directly into pro-glacial lakes. We thus propose that the variable sediment supply resulting from Patagonian glacial fluctuations may have acted as an on/off switch for Antarctic dust deposition. At the last glacial termination, Patagonian glaciers quickly retreated into lakes, which may help explain why the deglacial decline in Antarctic dust concentrations preceded the main phase of warming, sea-level rise and reduction in Southern Hemisphere sea-ice extent (Wolff et al., 2006, doi:10.1038/nature04614).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mediterranean Outflow Water (MOW) is characterised by higher temperatures and salinities than other ambient water masses. MOW spreads at water depths between 500 and 1500 m in the eastern North Atlantic and has been a source of salinity for the Atlantic Meridional Overturning Circulation in the North Atlantic. We used high-resolution Nd and Pb isotope records of past ambient seawater obtained from authigenic ferromanganese coatings of sediments in three gravity cores at 577, 1745 and 1974 m water depth in the Gulf of Cadiz and along the Portuguese margin complemented by a selection of surface sediments to reconstruct the extent and pathways of MOWover the past 23 000 years. The surface and downcore Nd isotope data from all water depths exhibit only a very small variability close to the present day composition of MOW but do not reflect the present day Nd isotopic stratification of the water column as determined from a nearby open ocean hydrographic station. In contrast, the Pb isotope records show significant and systematic variations, which provide evidence for a significantly different pattern of the MOW pathways between 20 000 and 12 000 years ago compared with the subsequent period of time.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sedimentary sections of three cores from the Celtic margin provide high-resolution records of the terrigenous fluxes during the last glacial cycle. A total of 21 14C AMS dates allow us to define age models with a resolution better than 100 yr during critical periods such as Heinrich events 1 and 2. Maximum sedimentary fluxes occurred at the Meriadzek Terrace site during the Last Glacial Maximum (LGM). Detailed X-ray imagery of core MD95-2002 from the Meriadzek Terrace shows no sedimentary structures suggestive of either deposition from high-density turbidity currents or significant erosion. Two paroxysmal terrigenous flux episodes have been identified. The first occurred after the deposition of Heinrich event 2 Canadian ice-rafted debris (IRD) and includes IRD from European sources. We suggest that the second represents an episode of deposition from turbid plumes, which precedes IRD deposition associated with Heinrich event 1. At the end of marine isotopic stage 2 (MIS 2) and the beginning of MIS 1 the highest fluxes are recorded on the Whittard Ridge where they correspond to deposition from turbidity current overflows. Canadian icebergs have rafted debris at the Celtic margin during Heinrich events 1, 2, 4 and 5. The high-resolution records of Heinrich events 1 and 2 show that in both cases the arrival of the Canadian icebergs was preceded by a European ice rafting precursor event, which took place about 1-1.5 kyr before. Two rafting episodes of European IRD also occurred immediately after Heinrich event 2 and just before Heinrich event 1. The terrigenous fluxes recorded in core MD95-2002 during the LGM are the highest reported at hemipelagic sites from the northwestern European margin. The magnitude of the Canadian IRD fluxes at Meriadzek Terrace is similar to those from oceanic sites.