465 resultados para Ocean-atmosphere interaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 33 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer, and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north, and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Planktic foraminifers Neogloboquadrina pachyderma (sin.) from 87 eastern and central Arctic Ocean surface sediment samples were analyzed for stable oxygen and carbon isotope composition. Additional results from 52 stations were taken from the literature. The lateral distribution of delta18O (18O/16O) values in the Arctic Ocean reveals a pattern of roughly parallel, W-E stretching zones in the Eurasian Basin, each ~0.5 per mil wide on the delta18O scale. The low horizontal and vertical temperature variability in the Arctic halocline waters (0-100 m) suggests only little influence of temperature on the oxygen isotope distribution of N. pachyderma (sin.). The zone of maximum delta18O values of up to 3.8 per mil is situated in the southern Nansen Basin and relates to the tongue of saline (> 33%.) Atlantic waters entering the Arctic Ocean through the Fram Strait. delta18O values decrease both to the Barents Shelf and to the North Pole, in accordance with the decreasing salinities of the halocline waters. In the Nansen Basin, a strong N-S delta18O gradient is in contrast with a relatively low salinity change and suggests contributions from different freshwater sources, i.e. salinity reduction from sea ice meltwater in the south and from light isotope waters (meteoric precipitation and river-runoff) in the northern part of the basin. North of the Gakkel Ridge, delta18O and salinity gradients are in good accordance and suggest less influence of sea ice melting processes. The delta13C (13C/12C) values of N. pachyderma (sin.) from Arctic Ocean surface sediment samples are generally high (0.75-0.95 per mil). Lower values in the southern Eurasian Basin appear to be related to the intrusion of Atlantic waters. The high delta13C values are evidence for well ventilated surface waters. Because the perennial Arctic sea ice cover largely prevents atmosphere-ocean gas exchange, ventilation on the seasonally open shelves must be of major importance. Lack of delta13C gradients along the main routes of the ice drift from the Siberian shelves to the Fram Strait suggests that primary production (i.e. CO2 consumption) does probably not change the CO2 budget of the Arctic Ocean significantly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

orty-eight surface sediment samples from the southeast (SE) Pacific (25-53°S) are investigated for the determination of the spatial distribution of organic-walled dinoflagellate cysts along the western South American continental margin. Fifty-five different taxa are recorded and reflect oceanic or coastal assemblages. The oceanic assemblages are characterised by low cyst concentrations and the dominance of autotrophs, while the coastal assemblages generally contain a higher number of cysts, which are mainly produced by heterotrophic species. Highest cyst concentrations are observed in the active upwelling system offshore Concepción (35-37°S). Brigantedinium spp., Echinidinium aculeatum, Echinidinium granulatum/delicatum and cysts of Protoperidinium americanum dominate assemblages related to upwelling. Echinidinium aculeatum appears to be the best indicator for the presence of all year round active upwelling cells. Other protoperidinioid cysts may also occur in high relative abundances in coastal regions outside active upwelling systems, if the availability of nutrients, co-responsible for the presence/absence of their main food sources such as diatoms and other protists, is sufficient. The importance of nutrient availability as a determining environmental variable influencing cyst signals on a regional scale (SE Pacific) is demonstrated through statistical analyses of the data. Because of the importance of nutrients, uncertainties about the outcomes of quantitative sea-surface temperature (SST) reconstructions (Modern Analogue Technique) based on dinoflagellate cysts may arise, since no interaction between different hydrographical variables is considered in this approach. The combination of the SE Pacific surface sample dataset with other published cyst data from the Southern Hemisphere resulted in a database which includes 350 samples: the 'SH350 database'. This database is used to test the accuracy of the quantitative reconstructions by calculating and comparing the estimated versus observed values for each site. An attempt to perform quantitative SST reconstructions on the last 25 cal ka of site ODP1233 (41°S; 74°27'W) is made and again stresses the importance of other environmental variables such as nutrient availability in determining the dinoflagellate cyst assemblages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to understand the vertical transport of particulate matter, suspended and settling particles were collected along a meridional transect between 46°N and 35°S and an equatorial longitudinal transect between 135°E and 175°E in the Pacific. The low COrganic/N atomic ratios (<8.2) of suspended particulate organic matter (OM) and good correlation between particulate organic carbon (OC) and chlorophyll-a confirmed that the suspended particulate OM in the surface water was mainly produced by phytoplankton. Only 0.1-3.2% of primary production was transported to 1.3 km water depth in the boreal central Pacific. All data on settling particles (excluding deep trap data) showed strongly positive correlation between total mass and OM fluxes with high correlation factor of 0.93. Biogenic opal-producing plankton, mainly diatoms were responsible for most of the vertical transport of particulate OM in association with higher COrganic/CCarbonate ratios in the subarctic and equatorial hemipelagic regions in the Pacific. This vertical transport of settling particles potentially works as a sink of CO2. In the transition zone during the May 1993, large difference between PCO2 (<300 µatm) in the surface water and pCO2 (340 µatm) in the atmosphere was actually due to enhanced particulate OM flux. Since the deep water of the Pacific is enriched in CO2 and nutrients, upwelled seawater may tend to release CO2 to the atmosphere. However, higher production of particulate matter could reduce the partial pressure of CO2 in the surface water. Also terrestrial nutrients' inputs in the western equatorial Pacific have potential for the reduction of CO2 in the surface water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the fact that ocean acidification is considered to be especially pronounced in the Southern Ocean, little is known about CO2-dependent physiological processes and the interactions of Antarctic phytoplankton key species. We therefore studied the effects of CO2 partial pressure (PCO2) (16.2, 39.5, and 101.3 Pa) on growth and photosynthetic carbon acquisition in the bloom-forming species Chaetoceros debilis, Pseudo-nitzschia subcurvata, Fragilariopsis kerguelensis, and Phaeocystis antarctica. Using membrane-inlet mass spectrometry, photosynthetic O2 evolution and inorganic carbon (Ci) fluxes were determined as a function of CO2 concentration. Only the growth of C. debilis was enhanced under high PCO2. Analysis of the carbon concentrating mechanism (CCM) revealed the operation of very efficient CCMs (i.e., high Ci affinities) in all species, but there were species-specific differences in CO2-dependent regulation of individual CCM components (i.e., CO2 and uptake kinetics, carbonic anhydrase activities). Gross CO2 uptake rates appear to increase with the cell surface area to volume ratios. Species competition experiments with C. debilis and P. subcurvata under different PCO2 levels confirmed the CO2-stimulated growth of C. debilis observed in monospecific incubations, also in the presence of P. subcurvata. Independent of PCO2, high initial cell abundances of P. subcurvata led to reduced growth rates of C. debilis. For a better understanding of future changes in phytoplankton communities, CO2-sensitive physiological processes need to be identified, but also species interactions must be taken into account because their interplay determines the success of a species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last deglaciation, the opposing patterns of atmospheric CO2 and radiocarbon activities (D14C) suggest the release of 14C-depleted CO2 from old carbon reservoirs. Although evidences point to the deep Pacific as a major reservoir of this 14C-depleted carbon, its extent and evolution still need to be constrained. Here we use sediment cores retrieved along a South Pacific transect to reconstruct the spatio-temporal evolution of D14C over the last 30,000 years. In ~2,500-3,600 m water depth, we find 14C-depleted deep waters with a maximum glacial offset to atmospheric 14C (DD14C = -1,000 per mil). Using a box model, we test the hypothesis that these low values might have been caused by an interaction of aging and hydrothermal CO2 influx. We observe a rejuvenation of circumpolar deep waters synchronous and potentially contributing to the initial deglacial rise in atmospheric CO2. These findings constrain parts of the glacial carbon pool to the deep South Pacific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on detailed reconstructions of global distribution patterns, both paleoproductivity and the benthic d13C record of CO2, which is dissolved in the deep ocean, strongly differed between the Last Glacial Maximum and the Holocene. With the onset of Termination I about 15,000 years ago, the new (export) production of low- and mid-latitude upwelling cells started to decline by more than 2-4 Gt carbon/year. This reduction is regarded as a main factor leading to both the simultaneous rise in atmospheric CO2 as recorded in ice cores and, with a slight delay of more than 1000 years, to a large-scale gradual CO2 depletion of the deep ocean by about 650 Gt C. This estimate is based on an average increase in benthic d13C by 0.4-0.5 per mil. The decrease in new production also matches a clear 13C depletion of organic matter, possibly recording an end of extreme nutrient utilization in upwelling cells. As shown by Sarnthein et al., [1987], the productivity reversal appears to be triggered by a rapid reduction in the strength of meridional trades, which in turn was linked via a shrinking extent of sea ice to a massive increase in high-latitude insolation, i.e., to orbital forcing as primary cause.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analytical data on the basic salt composition in evaporation products of sea (ocean) water and of rain water falling on the central area of the Indian Ocean are examined. Both hot and low-temperature (vacuum) distillation were used. When ocean water evaporates under calm conditions, sea salts in molecular-dispersed state, metamorphosed in the upper boundary layer, enter the atmosphere in addition to water vapor ("salt respiration of the ocean"). Concentration of these salts is about 0.5 mg per liter of water evaporated. Salts also enter the atmosphere from a foam-covered ocean surface as aerosols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction between biogenic silica export and burial, paleoceanography, diatom species succession and mats formation was examined based on relative abundances data of Plio/Pleistocene diatoms from six cores recovered during ODP Leg 177 on a transect across the Antarctic Circumpolar Current (ACC) in the Atlantic sector of the Southern Ocean. Fragilariopsis kerguelensis, Actinocyclus ingens and species of the genus Thalassiothrix were the main contributors to the diatom assemblages. Three main steps marked the development of the silica system in the Southern Ocean: Step 1 (at ca. 2.77 Ma), establishment of increased biogenic silica burial in the Antarctic Circumpolar Current area, following the large-scale oceanic reorganization connected to the increased northern hemisphere glaciation; Step 2 (at ca. 1.93 Ma), the Antarctic Polar Front becomes the main biogenic silica sink, diatom mats are widespread, and are also found slightly to the north and south of the APF; Step 3 (at ca. 0.63 Ma), with the strong drop in abundance (and later extinction at 0.38 Ma) of A. ingens and the rise to dominance of F. kerguelensis, the system enters a glacial-interglacial mode, with diatom mats occurring during interglacials at the APF and in the Antarctic Zone, but disappearing north of it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have determined the concentrations and isotopic composition of noble gases in old oceanic crust and oceanic sediments and the isotopic composition of noble gases in emanations from subduction volcanoes. Comparison with the noble gas signature of the upper mantle and a simple model allow us to conclude that at least 98% of the noble gases and water in the subducted slab returns back into the atmosphere through subduction volcanism before they can be admixed into the earth's mantle. It seems that the upper mantle is inaccessible to atmospheric noble gases due to an efficient subduction barrier for volatiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accumulation of carbon dioxide in the atmosphere will lower the pH in ocean waters, a process termed ocean acidification (OA). Despite its potentially detrimental effects on calcifying organisms, experimental studies on the possible impacts on fish remain scarce. While adults will most likely remain relatively unaffected by changes in seawater pH, early life-history stages are potentially more sensitive, due to the lack of gills with specialized ion-regulatory mechanisms. We tested the effects of OA on growth and development of embryos and larvae of eastern Baltic cod, the commercially most important fish stock in the Baltic Sea. Cod were reared from newly fertilized eggs to early non-feeding larvae in 5 different experiments looking at a range of response variables to OA, as well as the combined effect of CO2 and temperature. No effect on hatching, survival, development, and otolith size was found at any stage in the development of Baltic cod. Field data show that in the Bornholm Basin, the main spawning site of eastern Baltic cod, in situ levels of pCO2are already at levels of 1,100 µatm with a pH of 7.2, mainly due to high eutrophication supporting microbial activity and permanent stratification with little water exchange. Our data show that the eggs and early larval stages of Baltic cod seem to be robust to even high levels of OA (3,200 µatm), indicating an adaptational response to CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although various models have been proposed to explain the origin of manganese nodules (see Goldberg and Arrhenius), two major hypotheses have received extensive attention. One concept suggests that manganese nodules form as the result of interaction between submarine volcanic products and sea water. The common association of manganese nodules with volcanic materials constitutes the main evidence for this theory. The second theory involves a direct inorganic precipitation of manganese from sea water. Goldberg and Arrhenius view this process as the oxidation of divalent manganese to tetravalent manganese by oxygen under the catalytic action of particulate iron hydroxides. Manganese accumulation by the Goldberg and Arrhenius theory would be a relatively slow and comparatively steady process, whereas Bonatti and Nayudu believe manganese nodule formation takes place subsequent to the eruption of submarine volcanoes by the acidic leaching of lava.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent revisions of the geological time scale by Kent and Gradstein (in press) suggest that, on the average, Cretaceous magnetic anomalies are approximately 10 m.y. older than in Larson and Hilde's (1975) previous time scale. These revised basement ages change estimates for the duration of alteration in the ocean crust, based on the difference between secondary-mineral isochron ages and magnetic isochron-crustal ages, from 3 to approximately 13 m.y. In addition to the revised time scale, Burke et al.'s (1982) new data on the temporal variation of 87Sr/86Sr in seawater allow a better understanding of the timing of alteration and more realistic determinations of water/rock ratios during seawater-basalt interaction. Carbonates from all DSDP sites which reached Layer 2 of Atlantic crust (Sites 105, 332, 417, and 418) are deposited within 10-15 m.y. of crustal formation from solutions with 87Sr/86Sr ratios identical to unaltered or contemporaneous seawater. Comparisons of the revised seawater curve with the 87Sr/86Sr of basement carbonates is consistent with a duration of approximately 10-15 m.y. for alteration in the ocean crust. Our preliminary Sr and 87Sr/86Sr data for carbonates from Hole 504B, on 5.9-m.y.-old crust south of the Costa Rica Rift, suggest that hydrous solutions from which carbonates precipitated contained substantial amounts of basaltic Sr. For this reason, carbonate 87Sr/86Sr cannot be used to estimate the duration of alteration at this site. A basalt-dominated alteration environment at Hole 504B is consistent with heat-flow evidence which indicates rapid sediment burial of crust at the Costa Rica Rift, sealing it from access by seawater and resulting in unusually low water/rock ratios during alteration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physical and chemical environment around corals, as well as their physiology, can be affected by interactions with neighboring corals. This study employed small colonies (4 cm diameter) of Pocillopora verrucosa and Acropora hyacinthus configured in spatial arrays at 7 cm/s flow speed to test the hypothesis that ocean acidification (OA) alters interactions among them. Interaction effects were quantified for P. verrucosa using three measures of growth: calcification (i.e., weight), horizontal growth, and vertical growth. The study was carried out in May-June 2014 using corals from 10 m depth on the outer reef of Moorea, French Polynesia. Colonies of P. verrucosa were placed next to conspecifics or heterospecifics (A. hyacinthus) in arrangements of two or four colonies (pairs and aggregates) that were incubated at ambient and high pCO2 (1000 µatm) for 28 days. There was an effect of pCO2, and arrangement type on multivariate growth (utilizing the three measures of growth), but no interaction between the main effects. Conversely, arrangement and pCO2 had an interactive effect on calcification, with an overall 23 % depression at high pCO2 versus ambient pCO2 (i.e., pooled among arrangements). Within arrangements, there was a 34-45 % decrease in calcification for solitary and paired conspecifics, but no effect in conspecific aggregates, heterospecific pairs, or heterospecific aggregates. Horizontal growth was negatively affected by pCO2 and arrangement type, while vertical growth was positively affected by arrangement type. Together, our results show that conspecific aggregations can mitigate the negative effects of OA on calcification of colonies within an aggregation.