828 resultados para Isotope stable


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stable carbon and oxygen isotope analyses were conducted on well-preserved planktonic and benthic foraminifers from a continuous middle Eocene to Oligocene sequence at Ocean Drilling Program (ODP) Site 748 on the Kerguelen Plateau. Benthic foraminifer d18O values show a 1.0 per mil increase through the middle and upper Eocene, followed by a rapid 1.2 per mil increase in the lowermost Oligocene (35.5 Ma). Surface-dwelling planktonic foraminifer d18O values increase in the lowermost Oligocene, but only by 0.6 per mil whereas intermediate-depth planktonic foraminifers show an increase of about l.0 per mil. Benthic foraminifer d13C values increase by 0.9 per mil in the lowermost Oligocene at precisely the same time as the large d18O increase, whereas planktonic foraminifer d13C values show little or no change. Site 748 oxygen isotope and paleontological records suggest that southern Indian Ocean surface and intermediate waters underwent significant cooling from the early to late Eocene. The rapid 1.2 per mil oxygen isotope increase recorded by benthic foraminifers just above the Eocene/Oligocene boundary represents the ubiquitous early Oligocene d18O event. The shift here is unique, however, as it coincided with the sudden appearance of ice-rafted debris (IRD), providing the first direct link between Antarctic glacial activity and the earliest Oligocene d18O increase. The d18O increase caused by the ice-volume change in the early Oligocene is constrained by (1) related changes in the planktonic to benthic foraminifer d18O gradient at Site 748 and (2) comparisons of late Eocene and early Oligocene planktonic foraminifer d18Ovalues from various latitudes. Both of these records indicate that 0.3 per mil to 0.4 per mil of the early Oligocene d18O increase was ice-volume related.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent studies have shown that the Early Eocene Climatic Optimum (EECO) was preceded by a series of short-lived global warming events, known as hyperthermals. Here we present high-resolution benthic stable carbon and oxygen isotope records from ODP Sites 1262 and 1263 (Walvis Ridge, SE Atlantic) between ~54 and ~52 million years ago, tightly constraining the character, timing, and magnitude of six prominent hyperthermal events. These events, which include Eocene Thermal Maximum (ETM) 2 and 3, are studied in relation to orbital forcing and long-term trends. Our findings reveal an almost linear relationship between d13C and d18O for all these hyperthermals, indicating that the eccentricity-paced co-variance between deep-sea temperature changes and extreme perturbations in the exogenic carbon pool persisted during these events towards the onset of the EECO, in accord with previous observations for the Paleocene Eocene Thermal Maximum (PETM) and ETM2. The covariance of d13C and d18O during H2 and I2, which are the second pulses of the "paired" hyperthermal events ETM2-H2 and I1-I2, deviates with respect to the other events. We hypothesize that this could relate to a relatively higher contribution of an isotopically heavier source of carbon, such as peat or permafrost, and/or to climate feedbacks/local changes in circulation. Finally, the d18O records of the two sites show a systematic offset with on average 0.2 per mil heavier values for the shallower Site 1263, which we link to a slightly heavier isotopic composition of the intermediate water mass reaching the northeastern flank of the Walvis Ridge compared to that of the deeper northwestern water mass at Site 1262.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mid-Cretaceous (Barremian-Turonian) plankton preserved in deep-sea marl, organic-rich shale, and pelagic carbonate hold an important record of how the marine biosphere responded to short- and long-term changes in the ocean-climate system. Oceanic anoxic events (OAEs) were short-lived episodes of organic carbon burial that are distinguished by their widespread distribution as discrete beds of black shale and/or pronounced carbon isotopic excursions. OAE1a in the early Aptian (~120.5 Ma) and OAE2 at the Cenomanian/Turonian boundary (~93.5 Ma) were global in their distribution and associated with heightened marine productivity. OAE1b spans the Aptian/Albian boundary (~113-109 Ma) and represents a protracted interval of dysoxia with multiple discrete black shales across parts of Tethys (including Mexico), while OAE1d developed across eastern and western Tethys and in other locales during the latest Albian (~99.5 Ma). Mineralized plankton experienced accelerated rates of speciation and extinction at or near the major Cretaceous OAEs, and strontium isotopic evidence suggests a possible link to times of rapid oceanic plateau formation and/or increased rates of ridge crest volcanism. Elevated levels of trace metals in OAE1a and OAE2 strata suggest that marine productivity may have been facilitated by increased availability of dissolved iron. The association of plankton turnover and carbon isotopic excursions with each of the major OAEs, despite the variable geographic distribution of black shale accumulation, points to widespread changes in the ocean-climate system. Ocean crust production and hydrothermal activity increased in the late Aptian. Faster spreading rates [and/or increased ridge length] drove a long-term (Albian-early Turonian) rise in sea level and CO2-induced global warming. Changes in ocean circulation, water column stratification, and nutrient partitioning lead to a reorganization of plankton community structure and widespread carbonate (chalk) deposition during the Late Cretaceous. We conclude that there were important linkages between submarine volcanism, plankton evolution, and the cycling of carbon through the marine biosphere.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on organic carbon accumulation rates, nine time slices of oceanic export paleoproductivity (Pnew) are presented which depict the variability of Pnew on a global scale through the last 30,000 years and document that the basic distribution patterns did not change through glacial and interglacial times. However, the glacial ocean shows an increased contrast of high- versus low-productivity zones. d13C values of near-surface-dwelling planktonic foraminifera Globigerinoides ruber suggest that the same contrast applies to the glacial nutrient inventories of the ambient surface waters, with a significant glacial transfer of PO4 from low- to high-productivity zones. In this way, glacial Pnew increased by a global average of about 2-4 Gt C/yr and led, via an enhanced CaCO3 dissolution and alkalinity in the deep ocean, to a significant extraction of CO2 from the surface water and the atrnosphere.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The stable-isotope composition of carbonate minerals is a function of the temperature and isotopic composition of the materials from which they were precipitated or recrystallized. Because carbonates are among the most abundant secondary phases in oceanic volcanic rocks, information derived from their isotopic composition is useful in determining the environment(s) of seafloor alteration. Isotopic analyses of secondary carbonates in basalt recovered from numerous DSDP sites have been reported previously (Anderson and Lawrence, 1976; Brenneke, 1977; Lawrence et al., 1977; Seyfried et al., 1976; among others). These results are consistent with the formation of most secondary carbonates with sea water at low temperatures. The good recovery of basalts during DSDP Leg 58 provided the opportunity to extend the isotopic study of low-temperature alteration and vein formation to the crust of marginal ocean basins. The evidence for complex off-ridge volcanism and intrusive emplacement encountered at Leg 58 sites (Klein et al., 1978) suggested that modes of alteration at these sites might differ from those previously observed and described.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Oligocene-Miocene transition (OMT) (~23 Ma) is interpreted as a transient global cooling event, associated with a large-scale Antarctic ice sheet expansion. Here we present a 2.23 Myr long high-resolution (~3 kyr) benthic foraminiferal oxygen and carbon isotope (d18O and d13C) record from Integrated Ocean Drilling Program Site U1334 (eastern equatorial Pacific Ocean), covering the interval from 21.91 to 24.14 Ma. To date, five other high-resolution benthic foraminiferal stable isotope stratigraphies across this time interval have been published, showing a ~1 per mil increase in benthic foraminiferal d18O across the OMT. However, these records are still few and spatially limited and no clear understanding exists of the global versus local imprints. We show that trends and the amplitudes of change are similar at Site U1334 as in other high-resolution stable isotope records, suggesting that these represent global deep water signals. We create a benthic foraminiferal stable isotope stack across the OMT by combining Site U1334 with records from ODP Sites 926, 929, 1090, 1264, and 1218 to best approximate the global signal. We find that isotopic gradients between sites indicate interbasinal and intrabasinal variabilities in deep water masses and, in particular, note an offset between the equatorial Atlantic and the equatorial Pacific, suggesting that a distinct temperature gradient was present during the OMT between these deep water masses at low latitudes. A convergence in the d18O values between infaunal and epifaunal species occurs between 22.8 and 23.2 Ma, associated with the maximum d18O excursion at the OMT, suggesting climatic changes associated with the OMT had an effect on interspecies offsets of benthic foraminifera. Our data indicate a maximum glacioeustatic sea level change of ~50 m across the OMT.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A high-resolution sedimentary sequence recovered from the Tagus prodelta has been studied with the objective to reconstruct multi-decadal to centennial-scale climate variability on the western Iberian Margin and to discuss the observations in a wider oceanographic and climatic context. Between ca. 100 BC and AD 400 the foraminiferal fauna and high abundance of Globorotalia inflata indicate advection of subtropical waters via the Azores Current and the winter-time warm Portugal Coastal Current. Between ca. AD 400 and 1350, encompassing the Medieval Climate Anomaly (MCA), enhanced upwelling is indicated by the planktonic foraminiferal fauna, in particular by the high abundance of upwelling indicator species Globigerina bulloides. Relatively light d18O values and high sea surface temperature (SST) (reconstructed from foraminiferal assemblages) point to upwelling of subtropical Eastern North Atlantic Central Water. Between ca. AD 1350 and 1750, i.e. most of the Little Ice Age, relatively heavy d18O values and low reconstructed SST, as well as high abundances of Neogloboquadrina incompta, indicate the advection of cold subpolar waters to the area and a southward deflection of the subpolar front in the North Atlantic, as well as changes in the mode of the North Atlantic Oscillation. In addition, the assemblage composition together with the other proxy data reveals less upwelling and stronger river input than during the MCA. Stronger Azores Current influence on the Iberian Margin and strong anthropogenic effect on the climate after AD 1750 is indicated by the foraminiferal fauna. The foraminiferal assemblage shows a significant change in surface water conditions at ca. AD 1900, including enhanced river runoff, a rapid increase in temperature and increased influence of the Azores Current. The Tagus record displays a high degree of similarity to other North Atlantic records, indicating that the site is influenced by atmospheric-oceanic processes operating throughout the North Atlantic, as well as by local changes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Investigating the inter-basin deep water exchange between the Pacific and Atlantic Oceans over glacial-interglacial climate cycles is important for understanding circum-Antarctic Southern Ocean circulation changes and their impact on the global Meridional Overturning Circulation. We use benthic foraminiferal d13C records from the southern East Pacific Rise to characterize the d13C composition of Circumpolar Deep Water in the South Pacific, prior to its transit through the Drake Passage into the South Atlantic. A comparison with published South Atlantic deep water records from the northern Cape Basin suggests a continuous water mass exchange throughout the past 500 ka. Almost identical glacial-interglacial d13C variations imply a common deep water evolution in both basins suggesting persistent Circumpolar Deep Water exchange and homogenization. By contrast, deeper abyssal waters occupying the more southern Cape Basin and the southernmost South Atlantic have lower d13C values during most, but not all, stadial periods. We conclude that these values represent the influence of a more southern water mass, perhaps AABW. During many interglacials and some glacial periods, the gradient between Circumpolar Deep Water and the deeper southern Cape Basin bottom water disappears suggesting either no presence of AABW or indistinguishable d13C values of both water masses.